Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình học lớp 6 nên chẳng may có gì sai bạn(chị anh) sửa giúp em nhé:
Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(2\sqrt{n}\right)^2\) (bình phương cả 2 vế)
=> \(2n+2\sqrt{n^2-a^2}< 4n\)
=>\(2\sqrt{n^2-a^2}< 2n\)
=>\(\sqrt{n^2-a^2}< n\)
=>n2 - a2 < n2 (bình phương cả 2 vế)
Vì |a|>0
=>a2 > 0
=> n2-a2 < n2
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
câu b làm tương tự nhé:
Ta có:
\(\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< \left(1+1\right)\left(n+a+n-a\right)=4n\)
\(\Rightarrow\sqrt{n+a}+\sqrt{n-a}< \sqrt{4n}=2\sqrt{n}\)
cm thì xong r` mà BĐT trên thì + biểu thức dưới là - là sao ??
a) Bất đẳng thức đúng khi a = b = 2c
do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)
xảy ra khi n = 1
Thật vậy, ta có :
\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Vậy n nhỏ nhất là 1
b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)
do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
a)\(3-\sqrt{3}+\sqrt{15}-3\sqrt{5}=\sqrt{3}\left(\sqrt{3}-1\right)-\sqrt{15}\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{15}\right)=\sqrt{3}\left(\sqrt{3}-1\right)\left(1-\sqrt{5}\right)\)\(\)b)\(\sqrt{1-a}+\sqrt{1-a^2}=\sqrt{1-a}.1+\sqrt{1-a}.\sqrt{1+a}=\sqrt{1-a}\left(\sqrt{1+a}+1\right)\)
c)\(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b+\sqrt{ab}\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(a+2\sqrt{ab}+b\right)=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)^2\)
Bạn tham khảo lời giải tại link sau:
Câu hỏi của Hoa Trần Thị - Toán lớp 9 | Học trực tuyến
Ta có:\(\left|a\right|>0\)
\(\Leftrightarrow a^2>0\)
\(\Leftrightarrow-a^2< 0\)
\(\Leftrightarrow n^2-a^2< n^2\)
\(\Leftrightarrow\sqrt{n^2-a^2}< \sqrt{n^2}\)(\(n\ge a\Leftrightarrow n^2\ge a^2\Leftrightarrow n^2-a^2\ge0\))
\(\Leftrightarrow\sqrt{n^2-a^2}< n\)
\(\Leftrightarrow2\sqrt{n^2-a^2}< 2n\)
\(\Leftrightarrow\left(n+a\right)+\left(n-a\right)+2\sqrt{\left(n+a\right)\left(n-a\right)}< 2n+n+a+n-a\)
\(\Leftrightarrow\left(\sqrt{n+a}+\sqrt{n-a}\right)^2< 4n\)
\(\Leftrightarrow\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
Cách khác:
Với x,y \(\ge\)0 luôn có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (1)
Thật vậy (1) <=> \(x^2+y^2+2xy\le2\left(x^2+y^2\right)\)
<=>\(0\le x^2-2xy+y^2=\left(x-y\right)^2\) (luôn đúng)
Dấu "=" xảy ra <=> x=y\(\ge0\)
Do \(0\le\left|a\right|\le n\) => \(n-a\ge0\) ( khi cả a âm hay a dương)
Áp dụng bđt (1) có: \(\sqrt{n+a}+\sqrt{n-a}\le\sqrt{2\left(n+a+n-a\right)}\)=\(\sqrt{2.2n}=2\sqrt{n}\)
Dấu "=" xảy ra <=> \(n+a=n-a\) <=> 2a=0 <=> a=0( không thỏa mãn đk)
=> Dấu "=" không xảy ra
Vậy \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)
P/s : không phải lúc nào cũng có thể làm giống NK hoặc cách mình nên bạn hãy tham khảo