Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2i(3 + i)(2 + 4i) = 2i(2 + 14i) = -28 + 4i
b)
c) 3 + 2i + (6 + i)(5 + i) = 3 + 2i + 29 + 11i = 32 + 13i
d) 4 - 3i + = 4 - 3i + = 4 - 3i +
= (4 + ) - (3 + )i =
a) (3 + 2i)[(2 – i) + (3 – 2i)]
= (3 + 2i)(5 – 3i) = 21 + i
b)(4−3i)+1+i2+i=(4−3i)+(1+i)(2−i)5=(4−3i)(35+15i)=(4+35)−(3−15)i=235−145i(4−3i)+1+i2+i=(4−3i)+(1+i)(2−i)5=(4−3i)(35+15i)=(4+35)−(3−15)i=235−145i
c) (1 + i)2 – (1 - i)2 = 2i – (-2i) = 4i
d) 3+i2+i−4−3i2−i=(3+i)(2−i)5−(4−3i)(2+i)5=7−i5−11−2i5=−45+15i
a) thực =1; ảo =4
b)thực= -7; ảo= 6\(\sqrt{2}\)
c)thực=13; ảo=0
d)thực=1; ảo=7
a) \(A=\left[\left(\frac{1}{5}\right)^2\right]^{\frac{-3}{2}}-\left[2^{-3}\right]^{\frac{-2}{3}}=5^3-2^2=121\)
b) \(B=6^2+\left[\left(\frac{1}{5}\right)^{\frac{3}{4}}\right]^{-4}=6^2+5^3=161\)
c) \(C=\frac{a^{\sqrt{5}+3}.a^{\sqrt{5}\left(\sqrt{5}-1\right)}}{\left(a^{2\sqrt{2}-1}\right)^{2\sqrt{2}+1}}=\frac{a^{\sqrt{5}+3}.a^{5-\sqrt{5}}}{a^{\left(2\sqrt{2}\right)^2-1^2}}\)
\(=\frac{a^{\sqrt{5}+3+5-\sqrt{5}}}{a^{8-1}}=\frac{a^8}{a^7}=a\)
d) \(D=\left(a^{\frac{1}{2}}-b^{\frac{1}{2}}\right)^2:\left(b-2b\sqrt{\frac{b}{a}}+\frac{b^2}{a}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left[1-2\sqrt{\frac{b}{a}}+\left(\sqrt{\frac{b}{a}}\right)^2\right]\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2:b\left(1-\sqrt{b}a\right)^2\)
a) ta có : \(\left(2+i\sqrt{3}\right)^2=2^2+2.2.i\sqrt{3}+\left(i\sqrt{3}\right)^2\)
\(=4+4\sqrt{3}i-3=1+4\sqrt{3}i\)
b) ta có : \(\left(1+2i\right)^3=1^3+3.1^2.2i+3.1.\left(2i\right)^2+\left(2i\right)^3\)
\(=1+6i-6-8i=-5-2i\)
c) \(\left(3-i\sqrt{2}\right)^3=3^3-3.3^2.i\sqrt{2}+3.3.\left(i\sqrt{2}\right)^2+\left(i\sqrt{2}\right)^3\)
\(=27-27\sqrt{2}i-18-2\sqrt{2}i=9-29\sqrt{2}i\)
d) \(\left(2-i\right)^3=2^3-2.2^2.i+2.2.i^2-i^3\)
\(=8-8i-4+i=4-7i\)