Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19
Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)
Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24
n4 +6n3 + 11n2 + 6n
= n ( n3 + 2n2 + 4n2 + 8n + 3n + 6)
= n (n+2)(n2 + 4n + 3)
=n(n+2)(n+1)(n+3) là tích 4 số tự nhiên liên tiếp nên chia hết cho 8 và 3.
Mà (3;8) = 1 => n4 +6n3 + 11n2 + 6n chia hết cho 24
Ta có :
\(n^4+6n^3+11n^2+6n\)
\(=n^4+2n^3+4n^3+8n^2+3n^2+6n\)
\(=n^3\left(n+2\right)+4n^2\left(n+2\right)+3n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3+4n^2+3n\right)\)
\(=\left(n+2\right)\left(n^3+n^2+3n^2+3n\right)\)
\(=\left(n+2\right)\left[n^2\left(n+1\right)+3n\left(n+1\right)\right]\)
\(=\left(n+2\right)\left(n+1\right)\left(n^2+3n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Vì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)là tích của 4 số tự nhiên liên tiếp .
Nên \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)
\(\Rightarrow n^4+6n^3+11n^2+6n⋮24\) ( đpcm )
Lời giải:
Ta có:
\(M=n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)\)
\(=n[n^2(n+1)+5n(n+1)+6(n+1)]\)
\(=n(n+1)(n^2+5n+6)\)
\(=n(n+1)[n(n+2)+3(n+2)]\)
\(=n(n+1)(n+2)(n+3)\)
Trong 4 số nguyên liên tiếp $n,n+1,n+2,n+3$ có ít nhất một số chia hết cho $3$ nên \(M=n(n+1)(n+2)(n+3)\vdots 3(*)\)
Trong 4 số nguyên liên tiếp, bao giờ cũng có 2 số chẵn, một số lẻ. Trong 2 số chẵn liên tiếp bào giờ cũng có 1 số chia hết cho $2$, một số chia hết cho $4$ nên \(M=n(n+1)(n+2)(n+3)\vdots (2.4=8)(**)\)
Từ $(*)$ và $(**)$, mà $(3,8)=1$ nên $M\vdots (3.8=24)$
Ta có đpcm.
a)\(2^k>2k+1\left(1\right)\)
Với n=3, ta có:\(VT=8;VP=7\), nên (1) đúng nới n=3
Giả sử (1) đúng với \(k=n\), tức là \(2^n>2n+1\left(n\in N\text{*};n\ge3\right)\)
Ta sẽ chứng minh (1) đúng với \(k=n+1\) tức là phải chứng minh \(2^{n+1}>2\left(n+1\right)+1\)
Thật vậy, từ giả thiết quy nạp, ta có:
\(2^{n+1}=2\cdot2^n>2\left(2n+1\right)=4n+2=2n+3+\left(2n-1\right)>2n+3\), do \(\left(n\in N\text{*},n\ge3\right)\)
Vậy (1) đúng với mọi số nguyên \(k\ge3\)
b)\(n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[\left(n^3+n^2\right)+\left(5n^2+5n\right)+\left(6n+6\right)\right]\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)
Mà \(120⋮24\) =>Đpcm
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
t A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1)
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*)
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co:
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] =
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4)
nhận thấy A(k+1) là tích của số tự nhiên liên tiếp=> A(k+1) chia hết cho 24
=> A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).
b) n3 + 6n2 + 8n
= n( n2 + 6n + 8)
= n( n2 + 2n + 4n + 8)
= n[ n( n +2) + 4( n +2)]
= n( n +2)( n + 4)
Do n chẵn nên ta đặt : 2k = n
Ta có : 2k( 2k +2)( 2k +4)
= 2k.2( k +1)2( k +2)
= 8k( k + 1)( k +2)
Do : k;( k +1);( k +2) là 3 STN liên tếp sẽ chia hết cho 2,3
Suy ra : k( k + 1)( k +2) chia hết cho 6
Suy ra : 8k( k + 1)( k +2) chia hết cho 48
a) 24= 2.3.4
(n^2+n-1)^2-1 = (n^2-1+1+n).(n^2+n+1+1)
=(n^2+n).(n^2+n+2)=n.(n-1).(n-1).(n-2)
Tích của 4 số nguyên liên tiếp luôn chia hết cho 2,3,4
Mà U(2,3,4)=1 =>(n^2+n-1)^2 chia hết cho 2.3.4