K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2019

a, p>1 => 2p+1>3 và 4p+1>3 mà là 2 snt => không chia hết cho 3 (1)

xét 3 số 4p; 4p+1; 4p+2; có 1 số chia hết cho 3 (2)

Từ (1) và (2) => p chia hết cho 3 => p=3 do p nguyên tố. thử lại tm

b, p=2 tm. Nếu p>2 => p lẻ do nguyên tố => p+17 chẵn và lớn hơn 2 => p+17 hợp số => loại

vậy p=2

24 tháng 11 2019

+)Với p=2\(\Rightarrow\)\(\hept{\begin{cases}p+1=2+1=3\\p+17=2+17=19\\p+39=2+39=41\end{cases}}\)  (thỏa mãn)  (1)

Với p>2 nên p có dạng : 2k+1  (k\(\in\)N*)

+)Với p=2k+1\(\Rightarrow\)p+1=2k+1+1=2k+2  (k\(\in\)N*)

Mà p+2>2\(\Rightarrow\)p là hợp số

                \(\Rightarrow\)p=2k+1 (k\(\in\)  N*)  (loại)  (2)

Từ (1), (2)

\(\Rightarrow\)p=2

Vậy p=2.

24 tháng 11 2019

#Giải : p có dang 2k hoặc 2k + 1 ( k khác 0 )

+) Với p = 2k + 1 

=> p + 1 = 2k + 1 + 1 = 2k + 2 ( vô lí )

     p + 17 = 2k + 1 + 17 = 2k + 18 ( vô lí )

     p + 39 = 2k + 1 + 39 = 2k + 40 ( vô lí )

+) Với p = 2k = 2 ( Vì 2 là số nguyên tô chẵn duy nhất )

=>  p + 1 = 2 + 1 = 3 ( thỏa mãn )

      p + 17 = 2 + 17 = 19 ( thỏa mãn )

      p + 39 = 2 + 39 = 41 ( thỏa mãn )

Vậy p = 2

19 tháng 10 2016

a,p=2.

b,p=0,2,4.

c,ban tự lm

k mik nhe

13 tháng 3 2021

b, 

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

10 tháng 12 2021
10000×2000?
2 tháng 11 2016
p+2 ;p+8 ;4*p*p+1
+ nếu p=2p=2 thì p+2=42p+2=4⋮2 là hợp số (loại)
 
p=3p=3 thì p+2=5p+2=5 là số nguyên tố; p+8=11p+8=11 là số nguyên tố; 4p2+1=374p2+1=37 là số nguyên tố (tm)
+ với p>3p>3 thì p=3k+1p=3k+1 hoặc p=3k+2
Với p=3k+1p=3k+1 thì: p+8=3k+93p+8=3k+9⋮3 là hợp số (loại)
CM tương tự với p=3k+2p=3k+2.
Kết luận: p=3p=3 thì p,p+2;p+8;4p2+1p,p+2;p+8;4p2+1 cùng là số nguyên tố

p+2 ;p+8 ;4*p*p+1
+ nếu p=2p=2 thì p+2=4⋮2p+2=4⋮2 là hợp số (loại) 
+ p=3p=3 thì p+2=5p+2=5 là số nguyên tố; p+8=11p+8=11 là số nguyên tố; 4p2+1=374p2+1=37 là số nguyên tố (tm)
+ với p>3p>3 thì p=3k+1p=3k+1 hoặc p=3k+2
Với p=3k+1p=3k+1 thì: p+8=3k+9⋮3p+8=3k+9⋮3 là hợp số (loại)
CM tương tự với p=3k+2p=3k+2.
Kết luận: p=3p=3 thì p,p+2;p+8;4p2+1p,p+2;p+8;4p2+1 cùng là số nguyên tố

 
 
2 tháng 11 2016

mình không biết cách trình bày

sorry nha

2 tháng 11 2016

dài thế

2 tháng 11 2016

1.593;599

2.p=3

3.là số nguyên tố

5.

14 tháng 12 2015

a)Xét P =5k ( vì P là số nguyên tố)

 P+2=7 ; P+6 = 11 ; P+8 =13 ; P +14=19 (T/m)

Xét P =5k+1( k thuộc N)

P+14=5k+1+14 = 5k+15 chia hết cho 5(ko t/m)

Xét P=5k+2 

P + 8=5k+10 chia hêt cho 5 ( ko t/m)

Xét P=5k+3

P+2=5k+3=5k+5 chia hết cho 5 ( ko t/m)

Xét  P = 5k+4

P+6 =5k+4+6=5k+10 chia hết cho 5 ( ko t/m)

Vậy P = 5

 bài a này mik còn có cách giải khác nhưng dài hơn . 

14 tháng 12 2015

b) P là số nguyên tố > 3 nên  P có dạng : 3k+1 và 3k+2

TH1 : p= 3k+1 .Ta có:

2p+1 = 2(3k+1) = 6k+2+1 = 6k+3 chia hết cho 3 nên là hợp số ( loại)

TH2:p=3k+2 . Ta có:

2p+1 = 2(3k+2) = 6k+4+1=6k+5 ( là số nguyên tố theo đề bài ta chọn TH này)

Vậy 4p+1 = 4(3k+2)+1=12k+8+1 = 12k+9 . ta thấy 12k và 9 đều chia hết cho 3 nên(12k+9) là hợp số 

Do đó 4p+1 là hợp số ( đpcm)

mik làm bài a và b rùi,tick nhé

17 tháng 12 2023
Vì p là số nguyên tố lớn hơn 3 nên p \cancel{vdots} 3 ⇒ p có dạng 3k + 1 hoặc 3k + 2 ( k ∈ N** ) Xét p = 3k + 1 ⇒ 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 vdots 3 ( là hợp số ) ( Loại ) ⇒ p có dạng 3k + 2 ⇒ 4p + 1 = 4 . ( 3k  +2 ) + 1 = 12k + 8 + 1 = 12k + 9 vdots 3 ( là hợp số ) Vậy , 4p + 1 là hợp số .