Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)
Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)
Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)
Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)
Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)
Lập bảng xét giá trị cho từng trường hợp
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
13n−1−213n-1-2
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
6n+9⋮4n−16n+9⋮4n−1
⇒2.(6n+9)⋮4n−1⇒2.(6n+9)⋮4n−1
⇒12n+18⋮4n−1⇒12n+18⋮4n−1
⇒12n−3+21⋮4n−1⇒12n−3+21⋮4n−1
⇒3.(4n−1)+21⋮4n−1⇒3.(4n−1)+21⋮4n−1
Vì 3.(4n−1)⋮4n−1⇒21⋮4n−13.(4n−1)⋮4n−1⇒21⋮4n−1
Mà 4n - 1 chia 4 dư 3; 4n−1≥−14n−1≥−1 do n∈Nn∈N
⇒4n−1∈{−1;3;7}⇒4n−1∈{−1;3;7}
⇒4n∈{0;4;8}⇒4n∈{0;4;8}
⇒n∈{0;1;2}
4n+3=4n-1+4
vì 4n+3 chia het cho n-1
mà n-1 chia hết cho n -1
=>4 chia het cho n- 1
=>4 thuộc U[4]={1 ,2 ,4}
=>n=2,n=3,n=5
\(a,n+3⋮n-1\)
\(\Rightarrow n-1+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
~Study well~
#SJ
a) \(n+3⋮n-1\)
\(\Rightarrow n-1+4⋮n-1\)
Mà \(n-1⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2\right\}\)
Tìm nốt n
a) \(n+3⋮n-1\)
\(n-1+4⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)
mà \(n\in N\Rightarrow n\in\left\{2;3;5;0\right\}\)
a/
n+3⋮n−1n+3⋮n−1
⇔4⋮n−1⇔4⋮n−1
⇔n−1∈Ư(4)={1;−1;4;−4}
⇔n∈{0;2;−3;5}
Mà n là stn
⇔n∈{0;2;5}
b/ 4n+3⋮2n+1
⇔2(2n+1)+1⋮2n+1
⇔1⋮2n+1
⇔2n+1∈Ư(1)={1;−1}
Mà n là số tự nhiên
=> 2n + 1 là số tự nhiên
=> 2n + 1 = 1
=> 2n = 0
=> n = 0
k cho mik nha
a) \(\Rightarrow\)n + 3 \(⋮\)n + 1
n + 1 \(⋮\)n + 1
\(\Rightarrow\)\(=\frac{n+1+2}{n+1}\)
\(\Rightarrow\)\(=\frac{n+1}{n+1}+\frac{2}{n+1}\)
\(\Rightarrow\)\(2⋮n+1\)
\(\Rightarrow\)\(n+1\notin\)Ư(2)
Ta có bảng sau :
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
a) n+3 chia hết cho n-1
=>n-1+4 chia hết cho n-1
=> 4 chia hết cho n-1
Ta có bảng sau:
n-1 | 1 | 2 | 4 | -1 | -2 | -4 |
n | 2 | 3 | 5 | 0 | -1 | -1 |
vì n là số tự nhiên nên n thuộc tập hợp {2, 3, 5, 0}
b) 4n+3 chia hết cho 2n+1
=> 4n+2+1 chia hết cho 2n+1
=>1 chia hết cho 2n+1
Ta có bảng sau:
2n+1 | 1 | -1 |
n | 0 | -1 |
vì n là số tự nhiên nên n=0
chúc bạn học tốt nha
ủng hộ mk với nha
a)n=3
b)n=9