Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe
\(a,\)Để A là phân số thì 5 không chia hết cho n
\(b,\)Để A nguyên => \(5⋮n\)
\(\Rightarrow n\in\left(1;-1;5;-5\right)\)
Vậy ...................
a.điều kiện của n để A là phân số suy ra :n phải khác 0
a, Để A là phân số thì n + 1 khác 0
=> n khác -1
b, Để A là số nguyên thì 5 chia hết cho n + 1
=> n + 1 thuộc {1; -1; 5; -5}
=> n thuộc {0; -2; 4; -6}
Vậy...
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
Ta có :
\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}=1+\frac{4}{n-3}\)
Để \(A\in Z\)thì \(\frac{4}{n-3}\in Z\)
\(\Rightarrow n-3\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau :
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
Để \(A=\frac{n+1}{n-3}\)thì \(n+1⋮n-3\)
Ta có: \(n+1⋮n-3\)
\(\Rightarrow n-3+4⋮n-3\)
\(\Rightarrow4⋮n-3\)
Vì \(n\inℤ\Rightarrow n-3\inℤ\)
Mà \(4⋮n-3\Rightarrow n-3\inƯ\)của 4\(=\)\(\pm1;\pm2;\pm4\)
T̉a có bảng giá trị:
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Đối chiếu điều kiện n thuộc Z suy ra n\(=\)4;2;5;1;7;-1
a) n khác 1
b) n-1(5) = -1;1;-5;5
n= 0; 2; -4;6
ai cung k hieu chỉ vai bạn gioi hieu moi thay
dc hay