Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dịch đề :
Tìm 4 ẳn số a,b,c,d biết
a+b+c+d = 1
a+c+d =2
a+b+d =3
a+b+c = 4
=>b= (a+b+c+d)-(a+c+d) =1 - 2 =-1
=>c= (a+b+c+d)-(a+b+d) =1 - 3 =-2
=>d= (a+b+c+d)-(a+b+c) =1 - 4 =-3
=>a= (a+b+c+d)-(b+c+d) =1 - [(-1)+(-2)+(-3)]=1-(-6) =7
Vậy (a,b,c,d) = 7,-1,-2,-3
Theo đầu bài ta có:
( a + b + c + d ) - ( a + c + d ) = b => b = 1 - 2 = -1
( a + b + c + d ) - ( a + b + d ) = c => c = 1 - 3 = -2
( a + b + c + d ) - ( a + b + c ) = d => d = 1 - 4 = -3
1 - ( b + c + d ) = a => a = 1 - ( -1 + -2 + -3 ) = 7
a + b + c + d = 1
a + c + d = 2
=>(a + b + c + d)-(a + c + d)=b=1-2=-1
a + b + c + d = 1
a + b + d = 3
=> (a + b + c + d)-(a + b + d)=c=1-3=-2
a + b + c + d = 1
a + b + c = 4
=>(a + b + c + d)-(a + b + c)=d=1-4=-3
a + b + c + d = 1
b+c+d=-1+(-2)+(-3)=-6
=>(a + b + c + d )-(b+c+d)=1-(-6)=7=a
Ta có: (a+b+c+d)-(a+c+b)=1-2
=>b=-1
(a+b+c+d)-(a+b+d)=1-3
=>c=-2
(a+b+c+d)-(a+b+c)=1-4
=>d=-3
a+b+c+d=1
=>a+(-1)+(-2)+(-3)=1
=>a+(-6)=1
=>a=1-(-6)
=>a=7
Vậy a=7,b=-1,c=-2,d=-3
Trả lời:
\(a+b+c=4\) (1)
\(a+c+d=2\) (2)
\(a+b+d=3\) (3)
\(a+b+c+d=1\) (4)
Lấy (4) trừ (1), ta được:
\(a+b+c+d-\left(a+b+c\right)=1-4\)
\(\Rightarrow a+b+c+d-a-b-c=-3\)
\(\Rightarrow d=-3\)
Lấy (4) trừ (2), ta được:
\(a+b+c+d-\left(a+c+d\right)=1-2\)
\(\Rightarrow\)\(a+b+c+d-a-c-d=-1\)
\(\Rightarrow b=-1\)
Lấy (4) trừ (3), ta được:
\(a+b+c+d-\left(a+b+d\right)=1-3\)
\(\Rightarrow a+b+c+d-a-b-d=-2\)
\(\Rightarrow c=-2\)
Thay, b = - 1; c = - 2 vào (1), ta được:
\(a+\left(-1\right)+\left(-2\right)=4\)
\(\Rightarrow a=4+1+2=7\)
Vậy \(a=7;b=-1;c=-2;d=-3\)
\(b)\)
\(4n-3⋮3n-2\)
\(\Leftrightarrow3\left(4n-3\right)⋮3n-2\)
\(\Leftrightarrow12n-9⋮3n-2\)
\(\Leftrightarrow\left(12n-8\right)-1⋮3n-2\)
\(\Leftrightarrow4\left(3n-2\right)-1⋮3n-2\)
\(\Leftrightarrow1⋮3n-2\)
\(\Leftrightarrow3n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow3n\in\left\{1;3\right\}\)
Mà: \(3n⋮3\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
a+b= c+d
suy ra a = c+d-b thay vao ab + 1 = cd
suy ra (c+d-b)* b + 1 = cd
cb+db-b^2 +1 = cd
cb + db - b^2 +1 - cd = 0
(b-d)(c-d) = - 1
a,b,c,d nguyen nen B-d va c-d nguyen
Ta co 2 truong hop
b - d = -1 va c - b = 1
d = b + 1 va c = 1+ b
suy ra d = b (dpcm)
TH2
b - d = 1 c - b = -1
d = b - 1 c = b- 1
suy d = c (dpcm 0
Ta có: a+b+c+d=1
a+c+d=2
a+b+d=3
a+b+c=4
=>(a+b+c+d)-(a+c+d)=1-2 => b=-1
=>(a+b+c+d)-(a+b+d)=1-3 => c=-2
=>(a+b+c+d)-(a+b+c)=1-4 => d=-3
=> a = (a+b+c+d)-(b+c+d) = 1 - (-1-2-3) = 7
vậy a=7; b=-1; c=-2; d=-3
a+b+c+d=1
a+b+c=4
=>d=-3
a+b+d=3
=>c=-2
a+c+d=2
=>b=-1
a+b+c+d=1
=>a=7