Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(x\) ( km/giờ) là vận tốc của xe thứ nhất. \(\left(x>0\right)\)
Khi đó vận tốc của xe lửa thứ hai là \(x+5\)( km/giờ)
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\frac{450}{x}\) (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\frac{450}{x+5}\) (giờ)
Vì xe lửa thứ hai đi sau 11 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 11 giờ. Ta có phương trình:
\(\frac{450}{x}\)\(-\)\(\frac{450}{x+5}\)\(=1\)\(\Leftrightarrow x^2+5x-2250=0\)
Giải phương trình ta được: \(x_1=45\)( nhận ) \(;x_2=-50\)( loại )
Vậy: Vận tốc của xe lửa thứ nhất là \(45\) km/giờ
Vận tốc của xe lửa thứ hai là \(50\) km/giờ.
Gọi vận tốc của xe lửa thứ nhất là: x (km/h) (x > 0)
⇒ vận tốc xe lửa thứ hai là: x + 5 (km/h)
Do hai xe gặp nhau ở chính giữa quãng đường, với quãng đường từ Hà Nội đến Bình Sơn dài 900 km nên quãng đường mỗi xe đi được kể từ khi bắt đầu đến khi hai xe gặp nhau là 900: 2= 450 ( km)
gọi vận tóc xe lửa là là x (km/h) (x>0)
→vận tốc tàu hỏa là x+5 (km/h)
thời gian xe lửa ik là \(\dfrac{450}{x}\)(giờ)
thời gian tàu hỏa ik là \(\dfrac{450}{x+5}\)(giờ)
theo bài ra t cs PT:
\(\dfrac{450}{x}-\dfrac{450}{x+5}=1\)
→450x + 2250 - 450x - \(x^2\) - 5x=0
↔\(x^2+5x-2250=0\) (*)
giải PT (*): x1 = 45 (tm) ; x2 = -50 (loại)
→vận tóc tàu hỏa là : 45+5=50 (km/h)
vậy..............
Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.
Khi đó vận tốc của xe lửa thứ hai là x + 5 (km/h).
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\frac{450}{x}\) (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\frac{450}{x+5}\) (giờ)
Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:
\(\frac{450}{x}-\frac{450}{x+5}=1\)
\(\Leftrightarrow x^2+5x-2250=0\)
Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)
Vậy: Vận tốc của xe lửa thứ nhất là 45km/h
Vận tốc của xe lửa thứ hai là 50km/h
Gọi x (km/h) là vận tốc của xe thứ nhất. Điều kiện x > 0.
Khi đó vận tốc của xe lửa thứ hai là x + 5 (km/h).
Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: 450/x (giờ)
Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: 450/x+5 (giờ)
Vì xe lửa thứ hai đi sau 1 giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất 1 giờ. Ta có phương trình:
450/x−450/x+5=1
⇔ \(x^2\) +5x−2250=0
Giải phương trình ta được: x1 = 45 (nhận); x2 = -50 (loại)
Vậy: Vận tốc của xe lửa thứ nhất là 45km/h
Vận tốc của xe lửa thứ hai là 50km/h
tháng cho mát rượi kia mày dám đăng cái lăng ba nhăng lên à
các bạn ơi,có ai muốn chịch không,mình muốn lắm rồi
nếu ai muốn thì điểm danh,minh se tick va ket ban
mk nk
mk ở quãng ngãi nk
huyện nghĩa hành
còn bn
tk mk nhé
"Giúp tôi giải toán" trên Online Math đã trở thành một diễn đàn hết sức sôi động cho các bạn học sinh, các thầy cô giáo và các bậc phụ huynh từ mọi miền đất nước. Ở đây các bạn có thể chia sẻ các bài toán khó, lời giải hay và giúp nhau cùng tiến bộ. Để diễn đàn này ngày càng hữu ích, các bạn lưu ý các thông tin sau đây:
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
II. Cách nhận biết câu trả lời đúng
Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:
1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)
2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)
3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.
4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.
5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)
6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.
III. Thưởng VIP cho các thành viên tích cực
Online Math hiện có 2 loại giải thưởng cho các bạn có điểm hỏi đáp cao: Giải thưởng chiếc áo in hình logo của Online Math cho 3 - 5 bạn có điểm hỏi đáp cao nhất trong tháng và giải thưởng 1 tháng VIP cho 3 - 5 bạn có điểm hỏi đáp cao nhất trong tuần.