Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: 76-6(x-1)=10
\(\Leftrightarrow x-1=11\)
hay x=12
c: \(5x+15⋮x+2\)
\(\Leftrightarrow x+2=5\)
hay x=3
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
\(a,76-6\left(x-1\right)=10\)
\(76-6x-6=10\)
\(70-6x=10\)
\(6x=60\)
\(x=10\)
\(b,3.4^x-7=185\)
\(3.4^x=192\)
\(4^x=64\)
\(4^x=4^3\)
\(\Rightarrow x=3\)
Bài 1:Tìm x,biết:
a) 76 - 6( x - 1 ) = 10
=> 6( x - 1 ) = 76 - 10
=> 6( x - 1 ) = 66
=> x - 1 = 11
=> x = 12
b)3.4^x-7=185
=> 3.4^x = 185 + 7
=> 3.4^x = 192
=> 4^x = 64
=> 4^x = 4^3
=> x = 3
a, vì n^3+3n^2+2^n chia hết cho 6 nên:
n=3+3-2+2 chia hết cho 6
n= 2
b,n= 13-5 = n vậy nên:
suy ra : 5-13= n
vậy n =(-8)
k nha gagagagagaggaga
Ta có :
E = 62 + 63 + 64 + ... + 661
=> E = ( 62 + 63 ) + ( 64 + 65 ) + ... + ( 660 + 661 )
=> E = ( 62 + 63 ) + 62 . ( 62 + 63 ) + ... + 658 . ( 62 + 63 )
=> E = 252 + 62 . 252 + ... + 658 . 252
=> E = 7 . 36 + 62 . 7 . 36 + ... + 658 . 7 . 36
=> E = 7 . ( 36 + 62 . 36 + ... + 658 . 36 ) ⋮ 7
Ta có :
E = 62 + 63 + 64 + ... + 661 ( có 20 số hạng )
=> E = ( 62 + 63 + 64 ) + ( 65 + 66 + 67 ) + ... + ( 659 + 660 + 661 ) ( có đủ 20 nhóm )
=> E = ( 62 + 63 + 64 ) + 63 . ( 62 + 63 + 64 ) + ... + 657 . ( 62 + 63 + 64 )
=> E = 1548 + 63 . 1548 + ... + 657 . 1548
=> E = 36 . 43 + 63 . 36 . 43 + ... + 657 . 36 . 43
=> E = 43 . ( 36 + 63 . 36 + ... + 657 . 36 ) ⋮ 43
vì 20 chia hết cho 12 , 36 chia hết cho 12 nên 120a+36b chia hết cho 12
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
\(D=6+6^2+6^3+6^4+...+6^{120}\)
\(=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{119}+6^{120}\right)\)
\(=6\left(1+6\right)+6^3\left(1+6\right)+...+6^{119}\left(1+6\right)\)
\(=7\left(6+6^3+...+6^{119}\right)\)chia hết cho \(7\).
\(D=6+6^2+6^3+6^4+...+6^{120}\)
\(=\left(6+6^2+6^3\right)+...+\left(6^{118}+6^{119}+6^{120}\right)\)
\(=6\left(1+6+6^2\right)+...+6^{118}\left(1+6+6^2\right)\)
\(=43\left(6+...+6^{118}\right)\)chia hết cho \(43\).
11111111+65745