Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dat x2+2x+2=a (a>0)
pt<=> \(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)
=> \(\dfrac{\left(a-1\right)\left(a+1\right)}{a\left(a+1\right)}+\dfrac{a.a}{a\left(a+1\right)}=\dfrac{7}{6}\)
=> \(\dfrac{a^2-1}{a\left(a+1\right)}+\dfrac{a^2}{a\left(a+1\right)}=\dfrac{7}{6}\)
=> (2a2-1).6=7a(a+1)
=> 12a2-6=7a2+7a
=> 5a2-7a-6=0
\(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)
Đặt x2 + 2x + 1 = t, ta có:
\(\dfrac{t}{t+1}+\dfrac{t+1}{t+2}=\dfrac{7}{6}\)
\(\Leftrightarrow\)\(\dfrac{t\left(t+2\right)}{\left(t+1\right)\left(t+2\right)}+\dfrac{\left(t+1\right)^2}{\left(t+2\right)\left(t+1\right)}=\dfrac{7}{6}\)
\(\Leftrightarrow\) \(\dfrac{t^2+2t}{t^2+3t+2}+\dfrac{t^2+2t+1}{t^2+3t+2}=\dfrac{7}{6}\)
\(\Leftrightarrow\)\(\dfrac{t^2+2t+t^2+2t+1}{t^2+3t+2}=\dfrac{7}{6}\)
\(\Leftrightarrow\)\(\dfrac{2t^2+4t+1}{t^2+3t+2}=\dfrac{7}{6}\)
\(\Leftrightarrow\)6(2t2+4t+1) = 7(t2 + 3t + 2)
\(\Leftrightarrow\) 12t2 + 24t + 6 = 7t2 + 21t + 14
\(\Leftrightarrow\) 12t2 + 24t + 6 - 7t2 - 21t - 14 = 0
\(\Leftrightarrow\) 5t2 + 3t - 8 = 0
\(\Leftrightarrow\) 5t2 - 5t + 8t - 8 = 0
\(\Leftrightarrow\) 5t(t - 1) + 8(t - 1) = 0
\(\Leftrightarrow\) (5t + 8)(t - 1) = 0
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}5t+8=0\\t-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=-\dfrac{8}{5}\\t=1\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2+2x+1=-\dfrac{8}{5}\left(vôlívì:x^2+2x+1=\left(x+1\right)^2\ge0>-\dfrac{8}{5}\right)\\x^2+2x+1=1\end{matrix}\right.\)\(\Leftrightarrow\)x2 + 2x + 1 = 1
\(\Leftrightarrow\) x2 + 2x = 0
\(\Leftrightarrow\)x(x + 2) = 0
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy phương trình có n0 là S={-2;0}
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(6\left(a^2-2\right)+7a-36=0\)
\(\Leftrightarrow6a^2+7a-48=0\)
Nghiệm xấu
X-\(\frac{3}{2}\)+X-\(\frac{5}{6}\)=\(-\frac{1}{3}\)
➜2X=\(-\frac{1}{3}\)+\(\frac{3}{2}+\frac{5}{6}\)
➜ 2X=2
➜X = 1
Vậy....................
a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố
Nên n^7 đồng dư n (mod 7)
=> n^7 - n đồng dư 0 (mod 7)
=> n^7 - n chia hết cho 7
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm)
+ n=0 => A(n)=0 chia hết cho 7
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7
+Với n=k+1 thì
A(k+1)= (k+1)^7-(k+1)
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k)
Do k^7-k chia hết cho 7
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7
Suy ra: A(k+1) chia hết cho 7
Vậy: n^7 - n chia hết cho 7
k minh nha
Mà a^5 chia hết cho 5 => a chia hết cho 5
Chứng minh
a) a5-a chia hết cho 5
b) a7-a chia hết cho 7
a,Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
b,Phương pháp Fertma: Ta có n thuộc Z và 7 là số nguyên tố
Nên n^7 đồng dư n (mod 7)
=> n^7 - n đồng dư 0 (mod 7)
=> n^7 - n chia hết cho 7
- Phương pháp Qui nạp: Đặt A(n)=n^7 - n (cho dễ làm)
+ n=0 => A(n)=0 chia hết cho 7
+Giả sử n=k thì A(k)= k^7-k chia hết cho 7
+Với n=k+1 thì
A(k+1)= (k+1)^7-(k+1)
= k^7 + 7k^6 + 21k^5 + 35k^4 + 35k^3 + 21k^2 + 7k +1 - k -1
= k^7 - k + 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k)
Do k^7-k chia hết cho 7
& 7( k^6 +3k^5 + 5k^4 + 5k^3 +3k^2 +k) chia hết cho 7
Suy ra: A(k+1) chia hết cho 7
Vậy: n^7 - n chia hết cho 7
Mà a^5 chia hết cho 5 => a chia hết cho 5
nhé !
A B C M N
Trong \(\Delta ABC\) có:
\(BC^2=AC^2+AB^2=144+25=169\)
\(\Rightarrow BC=13\left(cm\right)\)
Xét \(\Delta\)ABC có:
MA = MB (gt)
NA=NC (gt)
=> MN là đường trung bình \(\Delta ABC\)
=>\(MN=\dfrac{1}{2}BC=\dfrac{1}{2}.13=6,5\left(cm\right)\)
Lại có: \(AN=\dfrac{1}{2}AC=6\left(cm\right)\)
P/S sai thui :))
chết mịa roài N là trung điểm BC :)) hèn gì thầy lạ :D sorry chán quá chắc 30phut nữa có thằng nhóc láu cá nó vào ns liền rồi nó giải cho :D
Tôi nghĩ là như này :)) Sai thì chịu nhá :((
Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)
Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)
Nên VP pt (1) cũng phải lớn hơn bằng 0
Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)
Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)
Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)
\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )
Vậy \(x=-2\) thỏa mãn pt.
\(\left|x+1\right|\) | - | + | + | + | + |
3\(\left|x-1\right|\) | - | - | + | + | + |
\(\left|x\right|\) | - | - | - | + | + |
\(2\left|x-2\right|\) | - | - | - | - | + |
PT | 2x-4=5x-2 | 2x-4=5x-2 | -4x+2=2x-2 | -4x+2=-2x+6 |
-1 0 1 2
1) x=-2/3>-1( loại)
2)
\(-5x+3x^2=0\\ \Leftrightarrow-x\left(5-3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\5-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(\left\{0;\frac{5}{3}\right\}\)
Ta có: \(-5x+3x^2=0\)
\(\Leftrightarrow3x^2-5x=0\)
\(\Leftrightarrow x\left(3x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\3x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{5}{3}\right\}\)