K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: Ta có: \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\widehat{NAB}=\widehat{BAC}+\widehat{NAC}=\widehat{BAC}+90^0\)

Do đó: \(\widehat{MAC}=\widehat{NAB}\)

Xét ΔMAC và ΔBAN có

MA=BA

\(\widehat{MAC}=\widehat{BAN}\)

AC=AN

Do đó: ΔMAC=ΔBAN

b: Gọi H là giao điểm của CM và BN

Ta có: ΔMAC=ΔBAN

=>\(\widehat{ANB}=\widehat{ACM}\)

=>\(\widehat{ANH}=\widehat{ACH}\)

=>AHCM là tứ giác nội tiếp

=>\(\widehat{NHC}=\widehat{NAC}=90^0\)

=>NB\(\perp\)MC tại H

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

NV
25 tháng 7 2021

Qua C kẻ đường thẳng vuông góc AC cắt AB kéo dài tại D

\(\left\{{}\begin{matrix}SC\perp\left(ABC\right)\Rightarrow SC\perp CD\\CD\perp AC\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAC\right)\)

Kẻ \(CH\perp SB\Rightarrow CH\perp\left(SAB\right)\)

\(\Rightarrow\widehat{HCD}\)  là góc giữa (SAB) và (SAC)

\(BC=\sqrt{AC^2-AB^2}=a\sqrt{2}\)

\(\dfrac{1}{CH^2}=\dfrac{1}{SC^2}+\dfrac{1}{BC^2}=\dfrac{13}{24a^2}\Rightarrow CH=\dfrac{2a\sqrt{78}}{13}\)

\(CD=AC.tanA=AC.\dfrac{BC}{AB}=a\sqrt{6}\)

\(sin\widehat{HCD}=\dfrac{DH}{CD}=\dfrac{\sqrt{CD^2-CH^2}}{CD}=...\)

25 tháng 7 2021

Giúp em vẽ hình được không ạ plss

7 tháng 8 2019

b1: cho hình hộp ABCDA'B'C'D' có tất cả các mặt đều là hinh fthoi cạnh a. góc BAA'= góc BAD = góc DAA' = 60 độ. tính độ dài AC
b2: cho tứ diện ABCD có CD=1/2 AB. I,J,K lần lượt là trung điểm của BC,AC,BD. biết JK=5/6AB. tính góc giữa CD với ỊJ và AB

NV
15 tháng 3 2022

Do ABC cân \(\Rightarrow AM\perp BC\)

Mà \(DA\perp\left(ABC\right)\Rightarrow DA\perp BC\)

\(\Rightarrow BC\perp\left(ADM\right)\Rightarrow BC\perp AH\)

\(\Rightarrow AH\perp\left(BCD\right)\)

b.

Gọi N là trung điểm AB \(\Rightarrow MN\) là đường trung bình tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}MN||AC\\MN=\dfrac{1}{2}AC=\dfrac{a}{2}\end{matrix}\right.\)

\(\Rightarrow\widehat{\left(AC;DM\right)}=\widehat{\left(MN;DM\right)}=\widehat{DMN}\)

\(DN=\sqrt{AD^2+AN^2}=\sqrt{AD^2+\left(\dfrac{AB}{2}\right)^2}=\dfrac{a\sqrt{89}}{10}\)

\(AM=\sqrt{AB^2-\left(\dfrac{BC}{2}\right)^2}=\dfrac{4a}{5}\Rightarrow DM=\sqrt{AD^2+AM^2}=\dfrac{4a\sqrt{2}}{5}\)

Định lý hàm cos cho tam giác DMN:

\(cos\widehat{DMN}=\dfrac{DM^2+MN^2-DN^2}{2DM.MN}=\dfrac{2\sqrt{2}}{5}\)

\(\Rightarrow\widehat{DMN}\approx55^033'\)

c.

M là trung điểm BC nên hiển nhiên \(G_1\) nằm trên AM và \(G_2\) nằm trên DM

Do \(G_1\) là trọng tâm ABC \(\Rightarrow\dfrac{AG_1}{AM}=\dfrac{2}{3}\Rightarrow\dfrac{MG_1}{AM}=\dfrac{1}{3}\)

Do \(G_2\) là trọng tâm DBC \(\Rightarrow\dfrac{DG_2}{DM}=\dfrac{2}{3}\Rightarrow\dfrac{MG_2}{DM}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{MG_1}{AM}=\dfrac{MG_2}{DM}\Rightarrow G_1G_2||DA\) (Talet đảo)

Mà \(DA\perp\left(ABC\right)\Rightarrow G_1G_2\perp\left(ABC\right)\)

NV
15 tháng 3 2022

undefined