Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.
Tứ giác EFGH là hình bình hành.
Cách 1: EB = EA, FB = FC (gt)
nên EF là đường trung bình của ∆ABC.
Do đó EF // AC
Tương tự HG là đường trung bình của ∆ACD.
Do đó HG // AC
Suy ra EF // HG (1)
Tương tự EH // FG (2)
Từ (1) và (2) suy ra EFGH là hình bình hành (dấu hiêu nhận biết 1).
Cách 2: EF là đường trung bình của ∆ABC nên EF = AC.
HG là đường trung bình của ∆ACD nên HG = AC.
Suy ra EF = HG
Lại có EF // HG ( chứng minh trên)
Vậy EFGH là hình bình hành (dấu hiệu nhận biết 3)
a) (a + b + c)2 = [(a + b) + c]2 = (a + b)2 + 2(a + b)c + c2
= a2+ 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac.
b) (a + b – c)2 = [(a + b) – c]2 = (a + b)2 - 2(a + b)c + c2
= a2 + 2ab + b2 - 2ac - 2bc + c2
= a2 + b2 + c2 + 2ab - 2bc - 2ac.
c) (a – b –c)2 = [(a – b) – c]2 = (a – b)2 – 2(a – b)c + c2
= a2 – 2ab + b2 – 2ac + 2bc + c2
= a2 + b2 + c2 – 2ab + 2bc – 2ac.
bài này phải không nếu đúng thì tích hộ mình
-
Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:
- Chứng Tỏ Rằng J Hả Bạn ??????
Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.
Theo giả thiết ABCD là hình bình hành nên ta có:
ˆDAB=ˆDCB,ˆADC=ˆABC (1)
Theo định lí tổng các góc của một tứ giác ta có:
ˆDAB+ˆDCB+ˆADC+ˆABC=360o (2)
Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o
Vì AG là tia phân giác ˆDAB (giả thiết)
⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)
Vì BG là tia phân giác ˆABC (giả thiết)
⇒⇒ ˆABG=1/2ˆABC
Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o
Xét ΔAGB= có:
ˆBAG+ˆABG=90o (3)
Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:
ˆBAG+ˆABG+ˆAGB=180o (4)
Từ (3) và (4) ⇒ˆAGB=90o
Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o
Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
?1 |
a,
Hình a,
Xét tứ giác ABCD
Có: góc B = góc A2 = 60 độ
mà góc B và góc A2 là hai góc so le trong
=> BC // AD
=> tứ giác ABCD là hình thang
Hình b,
Xét tứ giác EFGH
Có: góc G + góc H = 105 độ + 75 độ = 180 độ
mà góc G và góc H là hai góc trong cùng phía
=>EH // FG
=> tứ giác EFGH là hình thang
Hình c,
Xét tứ giác INKM
Có góc I = 75 độ, góc N2 = 120 độ => góc I #( khác) góc N2
mà góc I và góc N2 là hai góc đồng vị
=> tứ giác INKM không là hình thang
b,
Xét hình a,
Có: góc A + góc A2 = 180 độ( hai góc kề bù)
góc A = 180 độ - góc A2
góc A = 180 độ - 60 độ
góc A = 120 độ
Cạnh bên là AB
Hai góc kề một cạnh bên AB là góc A và góc B
Có: góc A + góc B = 60 độ + 120 độ = 180 độ
=> Hai góc kề một cạnh bên của hình thang có tổng số đo bằng 180 độ hay hai góc kề một cạnh bên của hình thang bù nhau
Tương tự với hình b
?2 |
a,
Hình 16:
Nối A với C
Xét tam giác ADC và tam giác CBA
Có: + góc DCA = góc BAC ( do AB // CD mà đây là hai góc so le trong)
+ Cạnh AC chung
+ góc DAC = góc BCA ( do AD // BC mà đây là hai góc so le trong)
=> tam giác ADC = tam giác CBA ( g.c.g)
=> AD = BC ( hai cạnh tương ứng)
=> AB = CD ( hai cạnh tương ứng)
Hình 17:
Nối A với C
Xét tam giác ABC và tam giác CDA
Có: + AB = CD ( gt)
+ góc BAC = góc DCA( do AB // CD mà đây là hai góc so le trong)
+ cạnh AC chung
=> tam giác ABC = tam giác CDA ( c.g.c)
=> AD = BC ( hai cạnh tương ứng )
=> góc DAC = góc BCA ( hai góc tương ứng)
mà hai góc DAC và BCA là hai góc so le trong
--> AD //BC
a)\(\frac{3xy}{9y}=\frac{\left(3y\right)x}{3.\left(3y\right)}=\frac{x}{3}\)(đúng)
b)\(\frac{3xy+3}{9y+3}=\frac{3\left(xy+1\right)}{3\left(3y+1\right)}=\frac{xy+1}{3y+1}\ne\frac{x}{3}\)(sai)
c)\(\frac{3xy+3}{9y+9}=\frac{3\left(xy+1\right)}{9\left(y+1\right)}=\frac{xy+1}{3\left(y+1\right)}\ne\frac{x+1}{3+3}=\frac{x+1}{6}\)(sai)
d)\(\frac{3xy+3x}{9y+9}=\frac{3y\left(y+1\right)}{9\left(y+1\right)}=\frac{x}{3}\)(đúng)