Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25-y^2=8\left(x-2013\right)^2\)
\(\Leftrightarrow\) \(8\left(x-2013\right)^2+y^2=25\) \(\left(\text{ *}\right)\)
Vì \(y^2\ge0\) nên \(\left(x-2013\right)^2\le\frac{25}{8}\)
Do đó: \(\left(x-2013\right)^2=0\) hoặc \(\left(x-2013\right)^2=1\)
+) Thay \(\left(x-2013\right)^2=1\) vào \(\left(\text{ *}\right)\) , ta có: \(y^2=17\) (loại)
+) Thay \(\left(x-2013\right)^2=0\) vào \(\left(\text{ *}\right)\), ta có: \(y^2=25\) \(\Leftrightarrow\) \(y=5\) hoặc \(y=-5\)
Vậy, \(x=2013\) ; \(y=5\) hoặc \(y=-5\)
a/ Đặt x+1= 2017
Ta có A = x6 - (x + 1)x5 + (x+1)x4 - (x +1)x3 + (x+1)x2 - (x +1)x + (x+1)
A= x6 - x6 - x5 + x5 +x4 - x4 -x3 + x3 + x2 - x2 -x +x +1
A= 1
k cho mình nha
B= x10 - (x+1)x9 + (x+1)x8 - (x+1)x7 + ..... +( x+1)x2 - (x+1)x
B= x10 - x10 - x9 + x9 + x8 - x8 - x7 + x7 +..... + x3 + x2 - x2 - x
B= -x
=> B= -2015
k cho mình
1) \(\left[\left(a+b\right)-c\right]^2=\left(a+b\right)^2-2c\left(a+b\right)+c^2\)
\(=\left(a^2+2ab+b^2\right)-2ac-2bc+c^2\)
\(=a^2+b^2+c^2+2ab-2ac-2bc\)
2)Phần này tg tự
3)\(\left(x+y+z\right)\left(x+y-z\right)=\left(x+y\right)^2-z^2=x^2+2xy+y^2-z^2\)
Câu 1:
Ta có:\(x\left(x^2-y\right)+x\left(y^2-y\right)-x\left(x^2+y^2\right)\)
\(=x\left(x^2-y+y^2-y-x^2-y^2\right)\)
\(=-2xy\)
Tại \(x=\frac{1}{2};y=-100\) PT có dạng:
\(=-2.\frac{1}{2}.\left(-100\right)=100\)
1) Có 3 = (22 - 1)
=> BT = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 +1)
= (24 - 1)(24 + 1)(28 + 1)(216 +1)
= (28 - 1)(28 + 1)(216 +1)
= (216 - 1)(216 +1)
= 232 - 1
Ukm
It's very hard
l can't do it
Sorry!
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt
b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)
\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)
Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)
\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)
Từ đó tính đc x
d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)
\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+5=a\), khi đó pt có dạng:
\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
\(25\left(x+y\right)^2-16\left(x-y\right)^2\)
\(=\left(5x+5y\right)^2-\left(4x-4y\right)^2\)
\(=\left(5x+5y+4x-4y\right)\left(5x+5y-4x+4y\right)\)
\(=\left(9x+y\right)\left(x+9y\right)\)
Rep ib tui với