Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
ta có: AB=AC suy ra 1/2 AB=1/2AC suy ra AN=NB=AM=MC
xét tam giác ABM và tam giác ACN có:
AB=AC
AM=AN(cmt)
A(chung)
suy ra tam giác ABM=ACN(c.g.c)
suy ra BM=CN
b)
ta có: I là trọng tâm cua tam giác ABC
ta có: MB=NC(theo câu a) suy ra 2/3MB=2/3NC suy ra IB=IC suy ra tam giac IBC cân tại I
c)
xét tam giác AIB và tam giác AIC có:
AB=AC
AI(chung)
IB=IC
suy ra tam giác AIB=AIC(c.c.c)
suy ra BAI=CAI
suy ra AI là phân giác của góc A
1: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
A B C M N
Vì \(\Delta ABC\)có \(AB=AC\) nên cân tại A.
\(\Rightarrow\)Góc NBC = Góc MCB
\(AB=AC\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow BM=CN\)
Xét \(\Delta BNC\)và \(\Delta CMB:\)
\(CN=BM\)( chứng minh trên )
Góc NBC = Góc MCB( chứng minh trên )
Chung cạnh BC
\(\Rightarrow\Delta BNC=\Delta CMB\)
Vậy \(\Delta BNC=\Delta CMB\)
Làm 3 cách lun nha
Làm tạm 1 cách thôi nhé
B A C N M
Xét \(\Delta BNC\)và \(\Delta BMC\)có:
\(BN=CM\)(Vì tam giác ABC cân tại A => AB = AC => 1/2 AB = 1/2 AC)
\(\widehat{ABC}=\widehat{ACB}\)(Vì tam giác ABC cân tại A)
\(BC\): chung
\(\Rightarrow\Delta BNC=\Delta CMB\left(c.g.c\right)\)
\(\Rightarrow BM=CN\)(2 cạnh t.ứng)