Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này bn biết làm chưa ,có cần mình gửi đáp án cho bn luôn ko?
a) bạn chỉ cần tính góc DAB + góc CAE = 90 độ. VÌ góc BAC = 90 độ.
NÊn SUY RA: góc DAB + góc CAE + góc BAC = 180 độ
SUY ra 3 điểm D, A, E thẳng hàng
b)
B C A H M E N D
( mik ko biết viết dấu góc nên thông cảm )
a,Xét tam giác DNA và tam giác HNA có
DN=HN( GT)
DNA=HNA ( \(=90^0\))
chung cạnh NA
=> tam giác DNA = tam giác HNA (c-g-c)=>DAN=NAH ( hai góc tương ứng)
Xét tam giác HAM và tam giác EAM có
HM=HE(GT)
HMA=EMA(\(=90^0\))
chung cạnh MA
=> tam giác HAM= tam giác EAM(c-g-c)=> HAM=EAM ( hai góc tương ứng )
Ta có : NAH+MAH=\(90^0\)
Mà DAN=NAH
EAM=MAH
=> DAN+EAM=\(90^0\)
Ta có : DAE=DAN+NAH+EAM+MAH
= (DAN+EAM)+(NAH+MAH)
= \(90^0 + 90^0\)
= \(180^0\)
Vậy ba điểm D,A,E thẳng hàng
a) Xét ΔDAN,ΔHANΔDAN,ΔHAN có :
HN=ND(gt)HN=ND(gt)
ANDˆ=ANHˆ(=90O)AND^=ANH^(=90O)
AN:ChungAN:Chung
=> ΔDAN=ΔHAN(c.g.c)ΔDAN=ΔHAN(c.g.c)
b) Xét ΔAMH,ΔAMEΔAMH,ΔAME có :
HM=ME(gt)HM=ME(gt)
AMHˆ=AMEˆ(=90o)AMH^=AME^(=90o)
AM:ChungAM:Chung
=> ΔAMH=ΔAME(c.g.c)ΔAMH=ΔAME(c.g.c)
Xét tứ giác ANHM có :
Nˆ=90O(HN⊥AB)N^=90O(HN⊥AB)
Aˆ=90O(ΔABC⊥A)A^=90O(ΔABC⊥A)
Mˆ=90O(HM⊥AC)M^=90O(HM⊥AC)
=> Tứ giác ANHM là hình chữ nhật
=> {NH=AMNA=HM{NH=AMNA=HM (tính chất hình chữ nhật)
Ta dễ dàng chứng minh được : ΔANH=ΔAMH(c.c.c)ΔANH=ΔAMH(c.c.c)
Mà : {ΔAND=ΔANHΔAHM=ΔAEM(cmt){ΔAND=ΔANHΔAHM=ΔAEM(cmt)
Suy ra : ΔAND=ΔAMEΔAND=ΔAME
=> DA=AEDA=AE(2 cạnh tương ứng) (*)
c) Từ (*) => A là trung điểm của DE
Do đó : D,A,E thẳng hàng (đpcm)
link nè bạn http://lazi.vn/edu/exercise/cho-tam-giac-nhon-abc-ke-duong-cao-ah-tu-h-ke-he-vong-goc-ab-e-thuoc-ab-ke-f-vuong-goc-voi-ac-f-thuoc-ac
k mk nhé thanks
Này người lạ ơi
.
. đừng nhìn đi đâu
- đúng rồi
- là bạn đó
- cho mình xin 1 ( t í c h) nhé :)
- còn việc kết bạn cứ để mik lo
a: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường trung tuyến
nên AB là tia phân giác của góc HAD(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó:ΔDHE vuông tại H