Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b ) Gọi d là ƯCLN(4n + 1; 6n + 1) Nên ta có :
4n + 1 ⋮ d và 6n + 1 ⋮ d
<=> 3(4n + 1) ⋮ d và 2(6n + 1) ⋮ d
<=> 12n + 3 ⋮ d và 12n + 2 ⋮ d
=> (12n + 3) - (12n + 2) ⋮ d
=> 1 ⋮ d => d = 1
=> \(\frac{4n+1}{6n+1}\) là phân số tối giản (đpcm)
a ) Gọi d là ƯCLN(3n - 2; 4n - 3) Nên ta có :
3n - 2 ⋮ d và 4n - 3 ⋮ d
<=> 4(3n - 2) ⋮ d và 3(4n - 3) ⋮ d
<=> 12n - 8 ⋮ d và 12n - 9 ⋮ d
=> (12n - 8) - (12n - 9) ⋮ d
=> 1 ⋮ d => d = 1
=> \(\frac{3n-2}{4n-3}\)là phân số tối giản (đpcm)
Với p = 2 => p + 11 = 2 + 11 = 13 là số nguyên tố
p + 17 = 2 + 17 = 19 là số nguyên tố (thỏa mãn)
Với p > 2 => p có dạng 2k + 1 (k ∈ N*)
+) p + 11 = 2k + 1 + 11 = 2k + 12 chia hết cho 2 và lớn hơn 2
=> p + 11 là hợp số (loại)
+) p + 17 = 2k + 1 + 17 = 2k + 18 chia hết cho 2 và lớn hơn 2
=> p + 17 là hợp số (loại)
Vậy p = 2
P/s: ko chắc
2.(21+22+23+24+25+26+27+28+29+30+31+32+33+34+35+36+37+38+39+40)=1220
\(\frac{1}{2!}+\frac{2!}{4!}+...+\frac{198!}{200!}=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{199}-\frac{1}{200}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
đoạn CB dài: 7-2=5cm
DC dài: 2:2=1cm
CE dài: 5:2=2,5
DE dài: 1+2,5=3,5cm
CI dài: (3,5:2)-1=0,75cm
Mình giúp đây
Đây ak
cảm ơn mọi người