Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phép thử T được xét là: "Gieo một con súc sắc hai lần".
a) Các phần tử của không gian mẫu của phép thử T được liệt kê trong bảng sau đây.
Trong bảng này, cột I là các mặt i chấm có thể xảy ra ở lần gieo thứ nhất, i = .
Dòng II (dòng trên cùng) là các mặt j chấm có thể xảy ra ở lần gieo thứ 2, j = . Mỗi ô (i, j) (giao của dòng i và cột j, 1 ≤ i, j ≤ 6) biểu thị một kết quả có thể có của phép thử T là: lần gieo thứ nhất ra mặt i chấm, lần gieo thứ 2 ra mặt j chấm.
Không gian mẫu:
Ta có thể mô tả không gian mẫu dưới dạng như sau:
Ω = {(i, j) i, j = 1, 2, 3, 4, 5, 6},
ở đó (i, j) là kết quả: " Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm".
Không gian mẫu có 36 phần tử.
b) A = "Lần gieo đầu được mặt 6 chấm";
B = "Tổng số chấm trong hai lần gieo là 8";
C = "Kết quả ở hai lần gieo là như nhau".
Đáp án B, do giới hạn trái tại 0 bằng âm vô cùng, giới hạn phải tại 0 bằng dương vô cùng
\(f\left(-x\right)=\left|-sinx-cosx\right|-\left|-sinx+cosx\right|\)
\(=\left|sinx+cosx\right|-\left|sinx-cosx\right|=-f\left(x\right)\)
\(\Rightarrow f\left(x\right)+f\left(-x\right)=0\)
\(\Rightarrow T=f\left(-\pi\right)+f\left(\pi\right)+f\left(-\frac{\pi}{2}\right)+f\left(\frac{\pi}{2}\right)+...+f\left(-\frac{\pi}{n}\right)+f\left(\frac{\pi}{n}\right)+f\left(0\right)\)
\(=0+0+...+0+f\left(0\right)=f\left(0\right)\)
\(=1-1=0\)
Một cách dựa vào hàm số:
Đặt \(VT=f\left(x\right)\)
- Nếu 2 trong 3 số a, b, c bằng nhau hoặc một trong 3 số bằng 0 thì pt hiển nhiên có nghiệm
- Nếu không có bất cứ cặp nào bằng nhau và đều khác 0, do tính đối xứng của \(f\left(x\right)\) , không làm mất tính tổng quát, giả sử \(a>b>c\) ta có:
\(f\left(a\right)=a\left(a-b\right)\left(a-c\right)\)
Do \(\left(a-b\right)\left(a-c\right)>0\Rightarrow f\left(a\right)\) cùng dấu với \(a\) \(\Rightarrow a.f\left(a\right)>0\) (1)
\(f\left(b\right)=b\left(b-c\right)\left(b-a\right)\)
Do \(\left(b-c\right)\left(b-a\right)< 0\Rightarrow b.f\left(b\right)< 0\) (2)
\(f\left(c\right)=c\left(c-a\right)\left(c-b\right)\)
Do \(\left(c-a\right)\left(c-b\right)< 0\Rightarrow c.f\left(c\right)>0\) (3)
- Nếu a, c cùng dấu \(\Rightarrow a;b;c\) cùng dấu \(\Rightarrow ab>0\)
Nhân vế với vế của (1) và (2): \(a.b.f\left(a\right).f\left(b\right)< 0\) \(\Rightarrow f\left(a\right).f\left(b\right)< 0\)
\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;b\right)\)
- Nếu \(a,\) c trái dấu \(\Rightarrow ac< 0\) nhân vế với vế của (1) và (3):
\(ac.f\left(a\right).f\left(c\right)>0\Rightarrow f\left(a\right).f\left(c\right)< 0\)
\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;c\right)\)
Vậy pt đã cho luôn luôn có nghiệm
d/
\(f'\left(x\right)=4cos^2\frac{x}{2}-2x.2cos\frac{x}{2}.sin\frac{x}{2}=2\left(1+cosx\right)-2x.sinx\)
\(f'\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow2+2cosx-2x.sinx=8cos\frac{x}{2}-3-2sinx\)
Chà, có vẻ bạn ghi ko đúng đề, pt này ko giải được.
Chắc \(g\left(x\right)=8cos\frac{x}{2}-3-2x.sinx\) mới đúng chứ nhỉ?
c/
\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)
\(f'\left(x\right)=g\left(x\right)\)
\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)
\(\Leftrightarrow2x\left(1+cosx\right)=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{cos\left(x+\frac{5\pi}{6}\right)}{cos\left(2x-\frac{\pi}{6}\right)}+\frac{sin\left(2x-\frac{\pi}{6}\right)}{cos\left(2x-\frac{\pi}{6}\right)}=0\)
\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)+sin\left(2x-\frac{\pi}{6}\right)=0\)
\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)=-sin\left(2x-\frac{\pi}{6}\right)\)
\(\Leftrightarrow cos\left(x+\frac{5\pi}{6}\right)=cos\left(2x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=x+\frac{5\pi}{6}+k2\pi\\2x+\frac{\pi}{3}=-x-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\frac{7\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
Lời giải:
Để hiểu công thức trên một cách đơn giản nhất thì bạn chỉ cần vẽ sơ đồ Ven ra, xác định các tập trên sẽ thấy ngay công thức trên đúng.
Nếu muốn chứng minh công thức trên theo cách minh bạch hơn thì như sau:
Trước tiên ta cm kết quả:
\(|A\cup B|=|A|+|B|-|A\cap B|\)
Thật vậy:
Đặt \(\left\{\begin{matrix} A=\left\{a_1,a_2,...,a_n, c_1,c_2,...,c_p\right\}\\ B=\left\{b_1,b_2,....,b_m,c_1,c_2,...,c_p\right\} \end{matrix}\right.\) với
\(\Rightarrow A\cup B=\left\{a_1,a_2,...,a_n, c_1,c_2,...,c_p, b_1,b_2,...,b_m\right\}\)
\(A\cap B=\left\{c_1,c_2,...,c_p\right\}\)
Ta có:
\(\Rightarrow |A|=n+p; |B|=|m+p|\); \(|A\cap B|=p; |A\cup B|=n+m+p\)
Do đó: \(|A\cup B|=|A|+|B|-|A\cap B|\)
--------------------
Áp dụng công thức trên:
\(|A\cup B\cup C|=|(A\cup B)\cup C|=|A\cup B|+|C|-|(A\cup B)\cap C|\)
\(=|A|+|B|-|A\cap B|+|C|-|(A\cap C)\cup (B\cap C)|\)
\(=|A|+|B|-|A\cap B|+|C|-(|A\cap C|+|B\cap C|)-|(A\cap C)\cap (B\cap C)|\)
\(=|A|+|B|-|A\cap B|+|C|-|A\cap C|-|B\cap C|+|A\cap B\cap C|\)
Như vậy đó.