với ạ c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2021

\(=\lim\left(\sqrt[3]{n^3-2n}\left(\sqrt[]{n^2+n}-n\right)+n\sqrt[3]{n^3-2n}-n^2\right)\)

\(=\lim\left(\dfrac{n\sqrt[3]{n^3-2n}}{\sqrt[]{n^2+n}+n}-\dfrac{2n^2}{\sqrt[3]{\left(n^3-2n\right)^2}+n\sqrt[3]{n^3-2n}+n^2}\right)\)

\(=\lim\left(\dfrac{n\sqrt[3]{1-\dfrac{2}{n^2}}}{\sqrt[]{1+\dfrac{1}{n}}+1}-\dfrac{2}{\sqrt[3]{\left(1-\dfrac{2}{n^2}\right)^2}+\sqrt[3]{1-\dfrac{2}{n^2}}+1}\right)\)

\(=+\infty-\dfrac{2}{3}=+\infty\)

28 tháng 3 2021

e cảm ơn ạ 

12 tháng 9 2021

CCCCCCCCCCCCCCCCCCCCCCCCCCCC

31 tháng 10 2016

giúp mình với !!!!

 

NM
2 tháng 9 2021

ta có \(x\in\left[-\frac{\pi}{4};0\right]\Rightarrow2x\in\left[-\frac{\pi}{2},0\right]\Rightarrow sin2x\in\left[-1,0\right]\)

Vậy \(\hept{\begin{cases}GTNN=-1\\GTLN=0\end{cases}}\)

23 tháng 6 2016

bài này dễ thôi bạn

thay x= x+ k6pi vào hàm số y=f(x)= sin\(\frac{x}{3}\) ta dc

 sin\(\frac{x+k6pi}{3}\) =sin\(\frac{x}{3}+k2pi\) ( vì k2pi  "số chẵn lần của π" nên có thể bỏ được)

suy ra sin\(\frac{x}{3}\) =sin\(\frac{x}{3}\) =f(x)  ( dpcm)