Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2+y^2+xy=18\\xy\left(x+2y\right)\left(y-x\right)=72\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(x+2y\right)+y\left(y-x\right)=18\\xy\left(x+2y\right)\left(y-x\right)=72\end{cases}}\)
Đặt \(\hept{\begin{cases}x\left(x+2y\right)=a\\y\left(y-x\right)=b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=18\\ab=72\end{cases}}\)
Tới đây thì đơn giản rồi nhé
\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)<=> \(\hept{\begin{cases}\left(x-2\right)+2\left(y-1\right)=9\\x+\left(y-1\right)=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x-2+2y-2=9\\x+y-1=-1\end{cases}}\)<=>\(\hept{\begin{cases}x+2y=13\\x+y=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-13\\y=13\end{cases}}\)
2. voi a1,a2,a3 duong nhân từng vế của hai phương trình\(\left(a_1+a_2+a_3\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}\right)=9\)
áp dụng phương pháp bdt không chặt thì pt trên xảy ra <=>\(a_1=a_2=a_3=1\)
1.
tu pt 2 ta co
dk: y(y+1) khac 0
x(x+1)=72/y(y+1)
the vao 1 ta co
\(\frac{72}{y\left(y+1\right)}+y\left(y+1\right)=18\)
<=>\(y^2\left(y+1\right)^2-18y\left(y+1\right)+81-9=0\)
<=>\(\left[y\left(y+1\right)-9\right]^2=3\)
tu giai tiep
ĐK \(x\ge1;y\ge1\)
(*) Xét PT (2)
\(\sqrt{y-1}=\sqrt{1\left(y-1\right)}\le\frac{y-1+1}{2}=\frac{y}{2}\Leftrightarrow x\sqrt{y-1}\le\frac{xy}{2}\) ( I )
Tương tự \(y\sqrt{x-1}\le\frac{xy}{2}\) (II)
Từ (I) và (II) => \(x\sqrt{y-1}+y\sqrt{x-1}\le\frac{xy}{2}+\frac{xy}{2}=xy\)
Dấu '' = '' xảy ra khi x = y = 2
Để hệ có nghiệm => pt (2) có nghiệm => pt (2) có nghiệm khi x = y= 2
Với x = y= 2 thay vào pt (1) nếu thoả mãn là nghiệm
Nếu không tm thì hệ vô nghiệm
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} x(x+1)+y(y+1)=18\\ xy(xy+x+y+1)=72\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x(x+1)+y(y+1)=18\\ xy(x+1)(y+1)=72\end{matrix}\right.\)
Đặt \(x(x+1)=a; y(y+1)=b\) thì hpt trở thành:
\(\left\{\begin{matrix} a+b=18\\ ab=72\end{matrix}\right.\)
Theo định lý Viete đảo thì $a,b$ là nghiệm của pt:
\(X^2-18X+72=0\)
\(\Rightarrow (a,b)=(12,6) \) và hoán vị
Nếu \(a=12; b=6\Rightarrow \left\{\begin{matrix} x(x+1)=12\\ y(y+1)=6\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=3; x=-4\\ y=2; y=-3\end{matrix}\right.\)
Nếu \(a=6; b=12\Rightarrow \left\{\begin{matrix} x(x+1)=6\\ y(y+1)=12\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2; x=-3\\ y=3; y=-4\end{matrix}\right.\)
Vậy \((x,y)=(3,2); (3, -3); (-4;2); (-4; -3)\) và hoán vị