Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
2) \(VT=\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Xét \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\) (1)
Xét \(3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Áp dụng bất đẳng thức Cauchy dạng phân thức
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\(\Rightarrow3\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
\(BDT\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)
Theo BĐT Nesbitt thì : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\frac{9}{4}\)
Không mất tính tổng quát, chuẩn hóa a + b + c = 3 \(\Rightarrow0< a,b,c< 3\)
Khi đó bất đẳng thức tương đương với: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{3}{4}\)
Xét BĐT phụ: \(\frac{x}{\left(3-x\right)^2}\ge\frac{2x-1}{4}\)với \(x\in\left(0;3\right)\)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(-2x+9\right)}{4\left(3-x\right)^2}\ge0\)(đúng với mọi \(x\in\left(0;3\right)\))
Áp dụng, ta được: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{2a-1}{4}+\frac{2b-1}{4}+\frac{2c-1}{4}\)
\(=\frac{2\left(a+b+c\right)-3}{4}=\frac{3}{4}\left(q.e.d\right)\)
Đẳng thức xảy ra khi a = b = c
a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta.
b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).
chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm
a) Bổ đề: \(x^3+y^3\ge xy\left(x+y\right)\forall x,y>0\)
\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{ab\left(a+b\right)}{ab}+\frac{bc\left(b+c\right)}{bc}+\frac{ca\left(c+a\right)}{ca}=2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Cảm ơn bạn nhiều nhé Nhật Pháp soi chiếu thế gian. Nếu có thể, mong bạn hãy giúp mình những phần còn lại ^^
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Thử :
Áp dụng BĐT Cosi ta đc :
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge\frac{9}{a+b+c}\)
\(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\ge3\sqrt{\frac{a}{c}.\frac{b}{a}.\frac{c}{b}}=3\)
Dấu ''='' xảy ra khi \(\frac{9}{a+b+c}\Leftrightarrow\frac{9}{3+3+3}=1\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases};c=1}\)
Lần đầu lm cs vẻ sai phần trình bày
No Name làm thế này mới đúng
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{c}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\)
Ta sẽ chứng minh
\(\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{9}{a+b+c}\Leftrightarrow\frac{3}{ab+bc+ca}+2\ge\frac{9}{a+b+c}\)
Đặt a+b+c=t thì ta cần chứng minh
\(\frac{6}{t^2-3}+2\ge\frac{9}{t}\Leftrightarrow\left(t+3\right)\left(t-3\right)^2\ge0\)
Dấu "=" xảy ra <=> a=b=c=1
\(VT=\frac{a^4}{a^3b}+\frac{b^4}{b^3c}+\frac{c^4}{c^3a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3b+b^3c+c^3a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{1}{3}\left(a^2+b^2+c^2\right)^2}=3\)
\(VP=\frac{9}{a+b+c}=\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}\le a+b+c\le3\) ( \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\)\(a+b+c\le3\) )
\(\Rightarrow\)\(VT\ge VP\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
này bạn ơi VP làm sao mà bé hơn 3 đc z ?