K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

a) \(x^3-30x^2-31x+1\)

\(=x^3-31x^2+x^2-31x+1\)

\(=x^2\left(x-31\right)+x\left(x-31\right)+1\)

\(=\left(x-31\right)\left(x^2+x\right)+1\)(1)

Thay x=31 hay x-31=0 vào (1) ta được :

\(0.\left(x^2+x\right)+1\)

\(=1\)

29 tháng 8 2019

b) Vì \(x=14\)

\(\Rightarrow15=x+1\)

     \(16=x+2\)

     \(29=2x+1\)

     \(13=x-1\)( nhớ ngoặc kí hiệu "và " 4 dòng này lại )

Thay vào biểu thức ta được :

\(x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(=x^5-x^5-x^4+x^3+2x^3-2x^3-x^2+x^2-x\)

\(=-x\)thay x=14 vào bt ta được :

\(=-14\)

11 tháng 7 2017

a,\(=x^3+x^2-\left(31x^2+31x\right)\)

\(=x^2\left(x+1\right)-31x\left(x+1\right)\)

\(=\left(x^2-31x\right)\left(x+1\right)=\left(31^2-31^2\right)\left(31+1\right)=0\)

b, Phân tích 3 số hạng đầu ta có:\(=x^5-x^4-\left(14x^4-14x^3\right)=\left(x^4-14x^3\right)\left(x-1\right)=\left(14^4-14^4\right)\left(x-1\right)=0\)

Thay x= 14 vào ta có: \(-29.14^2+13.14=-5502\)

c, do x=9 => x+1=10; Thay vào ta có:

\(C=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+10\)

\(C=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-....+x^3+x^2-x^2-x+10\)

\(C=-x+10=-9+10=1\)

CHÚC BẠN HỌC TỐT.....

8 tháng 5 2018

hình như ban ghi dau - thành + ở chỗ x^3-x^2-x^2-x+10

6 tháng 9 2019

VÀO TCN

Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY

https://olm.vn/thanhvien/nhu140826

https://olm.vn/thanhvien/trungkienhy79

Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.

6 tháng 9 2019

vÀO TCN CỦA MK

Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY

https://olm.vn/thanhvien/nhu140826

https://olm.vn/thanhvien/trungkienhy79

Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.

b) Tại x=14 thì:\(B\left(x\right)=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+x\left(x-1\right)\)

\(=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x=-x=-14\)

a) A(x)=1

19 tháng 8 2020

cậu giúp mình nốt phần kia đc k cậu

25 tháng 8 2018

a) Với x = 24

=> x + 1 = 24 (1)

Thay (1) vào A ta được:

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)

\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)

\(A=1\)

b) Với x = 31

=> x - 1 = 30 (1)

Thay (1) vào B ta được

\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)

\(B=x^3-x^3+x^2-x^2+x+1\)

\(B=x+1\)

\(B=31+1=32\)

c) Với x = 14

=> x + 1 = 15

x + 2 = 16

2x + 1 = 29

x - 1 = 13

Thay tất cả biểu thức trên vào C ta được

\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(C=-x\)

\(C=-14\)

d) Ta có:

\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)

\(\Rightarrow\left(-2+x^2\right)^5=1\)

\(\Rightarrow-2+x^2=1\)

\(\Rightarrow x^2=1+2=3\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)

27 tháng 5 2017

\(B=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x+14-14\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-\left(x-14\right)-14\)

\(=\left(x^4-x^3+2x^2-x-1\right)\left(x-14\right)-14\)

Thay x = 14 => B = -14

Vậy...

phần còn lại tách ra làm tương tự nhé

3 tháng 3 2018

cu tao to

30 tháng 7 2018

C=\(\left(x-1\right)x^2-4x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2x-2x+4\right)\)
C= \(\left(x-1\right)\left(x-2\right)\left(x-2\right)\)
bạn thay x vào rồi tính là được
B=\(x\left(2x-y\right)-z\left(y-2x\right)=x\left(2x-y\right)+z\left(2x-y\right)=\left(2x-y\right)\left(x+z\right)\)
bạn thay x,y,z tính là ok
Bài a mình k chắc lắm nhưng nghĩ là thay vào rồi tính

31 tháng 7 2018

còn câu a) thì sao???????????? @_@

\(A=x^3-30x-31x+1\)

=\(x^3-31x^2+x^2-31x+1\)

=\(x^2\left(x-31\right)+x\left(x-31\right)+1\)

=1(do x=31)

\(B= x^4 -17x^3 +17x^2 -17x + 20 tại x= 16\)

\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)

=\(x^3\left(x-16\right)+x^2\left(x-16\right)+x\left(x-16\right)-x+20\)

=-16+20=4

5 tháng 9 2017

Thay 30 = x - 1, 2 câu kia tương tự

19 tháng 8 2020

a) Ta có:

\(A\left(x\right)=x^3-30x^2-31x+1\)

\(A\left(x\right)=x^3-31x^2+x^2-31x+1\)

\(A\left(x\right)=\left(x^3-31x^2\right)+\left(x^2-31x\right)+1\)

\(A\left(x\right)=x^2.\left(x-31\right)+x.\left(x-31\right)+1\)

\(A\left(x\right)=\left(x-31\right).\left(x^2+x\right)+1\)

+ Thay \(x=31\) vào biểu thức \(A\left(x\right)\) ta được:

\(A\left(x\right)=\left(31-31\right).\left(31^2+31\right)+1\)

\(A\left(x\right)=0.992+1\)

\(A\left(x\right)=0+1\)

\(A\left(x\right)=1.\)

Vậy giá trị của biểu thức \(A\left(x\right)\)\(1\) tại \(x=31.\)