Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 5
a) có đa thức x2-4x+a nhận x=1 làm 1 nghiệm
=> 12-4.1+a=0
=>1-4+a=0
-3+a=0
a=3
các câu b,c,d làm tương tự
bài 6
a) có : A(x)=x2+ax+b
=>A(0)=02+a.0+b=b
mà A(0)=5
=>b=5
lại có A(x)nhận x=-1 làm 1 nghiệm
=>A(-1)=(-1)2+a.(-1)+b=0
=>1-a+b=0
=>1-a+5=0
=>a=6
b)có: B(x)=(x+2)(x+3)
cho B(x)=0
=>(x+2)(x+3)=0
=>x+2=0 hoặc x+3=0
(+)x+2=0 (+)x+3=0
x=-2 x=-3
=> nghiệm của đa thức B(x) là x=-2;x=-3
mà nghiệm của B(x) cũng là nghiệm của A(x)
=>nghiệm của đa thức A(x) là x=-2;x=-3
(*) x=-2 là nghiệm của A(x)
=>A(-2)=(-2)2+a.(-2)+b=4-2a+b=0 (1)
(*)x=-3 là nghiệm của A(x)
=>A(-3)=(-3)2+a.(-3)+b=9-3a+b=0 (2)
từ (1)và(2)=>(9-3a+b)-(4-2a+b)=0-0
=>9-3a+b-4+2a-b=0
=>5-a=0
a=5
thay a=5 vào (1) ta được:
4-5.2+b=0
4-10+b=0
-6+b=0
b=6
\(15,A\\ 16,C\\ 17,B\\ 18,C\\ 22,B\\ 23,C\\ 24,A\\ 25,A\)
bạn nào trả lời nhanh nhất và ở bài tính thì giải thích chi tiết nhất thì mình mình tick bạn đó nhé
Vì \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left(y-3\right)^2\ge0\end{cases}\forall x,y\Rightarrow\left|x+1\right|+\left(y-3\right)^2\ge0\forall x,y}\)
\(\Rightarrow N=\left|x+1\right|+\left(y-3\right)^2+10\ge10\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x+1\right|=0\\\left(y-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=3\end{cases}}}\)
Vậy MinN = 10 khi x=-1,y=3
\(a,\left\{{}\begin{matrix}AB=CD\\AD=BC\\AC\text{ chung}\end{matrix}\right.\Rightarrow\Delta ACB=\Delta CAD\left(c.c.c\right)\\ b,\Delta ACB=\Delta CAD\\ \Rightarrow\widehat{BAC}=\widehat{DCA}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\\ c,\Delta ACB=\Delta CAD\\ \Rightarrow\widehat{BCA}=\widehat{DAC}\\ \text{Mà 2 góc này ở vị trí slt nên }AD\text{//}BC\)
thanks