Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-3)3 + 3 -x =0
=>x3-9x2+26x-24=0
=>x3-7x2+12x-2x2+14x-24=0
=>x(x2-7x+12)-2(x2-7x+12)=0
=>(x-2)(x2-7x+12)=0
=>(x-2)[x2-4x-3x+12]=0
=>(x-2)[x(x-4)-3(x-4)]=0
=>(x-2)(x-3)(x-4)=0
=>x-2=0 hoặc x-3=0 hoặc x-4=0
=>x=2 hoặc 3 hoặc 4
Vậy tập nghiệm của pt là S={2;3;4}
= (x-3)3 - (x-3) =0
(x-3)((x-3)2 -1)=0
(x-3)(x-3+1)(x-3-1) =0
(x-3)(x-2)(x-4) =0
x = 3;2;4
đơn giản,dễ hiểu, vận dụng hđt đáng nhớ, có ai giỏi =em k
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
\(2x^2y^3-\frac{x}{4}-4y^6\)
đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được
\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)
\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)
a) Đặt a + b = x ; a - b = y. Khi đó:
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(\Leftrightarrow x^3-y^3\)
\(\Leftrightarrow\left[x-y\right]\left[x^2+xy+y^2\right]\)
Thế lại vào ta có:
\(\Leftrightarrow\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(\Leftrightarrow\left[\left(a-a\right)+\left(b+b\right)\right]\left[\left(a^2+b^2+2ab\right)+\left(a^2-b^2\right)+\left(a^2+b^2-2ab\right)\right]\)
\(\Leftrightarrow2b\left[\left(a^2+a^2+a^2\right)+\left(b^2-b^2+b^2\right)+\left(2ab-2ab\right)\right]\)
\(\Leftrightarrow2b\left[3a^2+b^2\right]\)
Mik làm tuỳ theo mình piết thôi nhé
a) ( a + b )3- ( a - b )3= a3 + b3 - a3 - b3 = a3 - a3 + b3 - b3 = 0
b) tương tự như ở trên!!! Hơi khác một tí!!!
c) ( 6x - 1 )2 - ( 3x + 2 ) = ..........
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a+b-a+b\right)\left(\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)
\(=2b\left(\left(a+b\right)^2+\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)
\(\left(a+b\right)^3+\left(a-b\right)^3\)
\(=\left(a+b+a-b\right)\left(\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right)\)
\(=2a\left(\left(a+b\right)^2-\left(a^2-b^2\right)+\left(a-b\right)^2\right)\)
a) (a+b)3 -(a-b)3 = a3 + 3a2b + 3ab2 +b3 - a3 + 3a2b - 3ab2 +b3
= 2a3 + 6a2b + 2b3
phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung(không dùng HĐT)
x3 -3x2y+3xy2 - y3
\(=xy\left(x^2-3x+3y-y^2\right)\)
\(=xy\left[\left(x-y\right)\left(x+y\right)+3\left(x-y\right)\right]\)
\(=xy\left(x-y\right)\left(x+y+3\right)\)
\(Ht\)
nếu sai cho mik xl vì mik chx thành thục cái này
Đề sai nhé .Sửu lại
\(x^2-4x^2y^2+4+4x\)
\(=\left(x^2+4x+4\right)-4x^2y^2\)
\(=\left(x+2\right)^2-\left(2xy\right)^2\)
\(=\left(x+2+2xy\right)\left(x+2-2xy\right)\)
\(H=3x-5-3x^2\)
\(=-3\left(x^2-x+\frac{5}{3}\right)\)
\(=-3\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{17}{12}\right)\)
\(=-3\left(\left(x-\frac{1}{2}\right)^2+\frac{17}{12}\right)\)
\(=\frac{-17}{4}-3\left(x-\frac{1}{2}\right)^2\le\frac{-17}{4}\)
\(MAXH=\frac{-17}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(x^3-25x=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)