K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

ta xét vế trái =1+\(\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}\)=\(\frac{2}{ab}+1\)

mặt khác :a+b>=\(2\sqrt{ab}\)

=> (a+b)^2>=4ab

=>ab<=\(\frac{1}{4}\)

=>1/ab>=1/4

=>VT>=1+2*4=9

dấu = khi a=b=1/2

23 tháng 3 2017

Áp dụng dịnh lí Côsi, ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

\(=9\sqrt[3]{abc.\frac{1}{abc}}\)

\(=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

16 tháng 7 2015

Cách khác:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

30 tháng 4 2018

ta có

\(M=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Lại áp dụng bất đẳng thức : \(\frac{x}{y}+\frac{y}{x}\ge2\)vào vế trên ta được \(M\ge3+2+2+2=9\left(dpcm\right)\)

30 tháng 4 2018

Áp dụng bất đẳng thức Bunyakovsky , ta có 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\frac{\sqrt{a}}{\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}}+\frac{\sqrt{c}}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)

22 tháng 9 2019

Áp dụng BĐT Cô -si cho 3 số dương:

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

21 tháng 4 2016

=1+1/a+1/b+1/ab  (1)

Áp dụng Cosy ta có  1/a+1/b>=4/(a+b)=4  (2)

  (a+b)^2>=4ab   nên ab<=(a+b)^2/4=1/4  hay 1/ab>=4  (3)

Từ (1)(2)(3)  ta đc 1+1/a+1/b+1/ab>=1+4+4=9  (đpcm)

21 tháng 4 2016

Ta có: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\) \(=\left(1+1+\frac{b}{a}\right)\left(1+1+\frac{a}{b}\right)\) \(=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\) \(=4+2\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{ab}{ab}\) \(=5+2\left(\frac{a}{b}+\frac{b}{a}\right)\)

. Áp dụng BĐT Cô-si cho 2 số \(\frac{a}{b}\) và \(\frac{b}{a}\) , ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ab}}=2\) . Suy ra \(2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4\)

. Suy ra \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge5+4=9\) (đpcm)

. Dấu "=" xảy ra khi \(a=b\)

22 tháng 4 2016

Mình học lớp 7 nên chỉ làm được phần b, thôi

b, * Nếu x=1 thì: 

1+1=2

* Nếu x=2 thì:

2+ 1/2 >2

* Nếu x>2 

=> x + 1/x   >   2 ( vì 1/x là số dương )

Vậy x + 1/x >=2 (x>0)

22 tháng 4 2016

Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html

30 tháng 4 2018

Áp dụng bđt Cauchy-Schwarz:

\(A=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\)