Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)-\left(18x-12\right)\)
\(=6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)-18x+12\)
\(=6x^2+21x-2x-7-6x^2+5x-6x-5-18x+12\)
\(=0\left(đpcm\right)\)
\(b,\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=0\left(đpcm\right)\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
A = (2x - 3)(3x + 5) - (x - 1)(6x + 2) + 3 - 5x
= 6x2 + 10x - 9x - 15 - 6x2 - 2x + 6x + 2 + 3 - 5x
= (6x2 - 6x2) + (10x - 9x - 2x + 6x - 5x) - (15 - 2 - 3)
= -10
Vậy A ko phụ thuộc vào giá trị của biến x
a, A = 6x^2+x-15-6x^2+4x+2+3-5x = -10
=> Gía trị của biểu thức A ko phụ thuộc vào giá trị của biến
k mk nha
M = ( x + 1 )3 - x3 + 1 - 3x( x + 1 )
= x3 + 3x2 + 3x + 1 - x3 + 1 - 3x2 - 3x
= 2
Vậy M không phụ thuộc vào biến ( đpcm )
N = ( 2x - 1 )3 - 6x( 2x - 1 )2 + 12x2( 2x - 1 ) - 8x3
= [ ( 2x - 1 ) - 2x ]3 ( HĐT số 4 )
= [ 2x - 1 - 2x ]3
= [ -1 ]3 = -1
Vậy N không phụ thuộc vào biến ( đpcm )
\(a,x^4-2x^3+6x^2+x+14\\ =\left(x^4-3x^3+7x^2\right)+\left(x^3-3x^2+7x\right)+\left(2x^2-6x+14\right)\\ =\left(x^2-3x+7\right)\left(x^2+x+2\right):\left(x^2-3x+7\right)=x^2+x+2\)
Ta có \(x^2+x+2=x^2+x+\dfrac{1}{4}+\dfrac{7}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)
Vậy ...
\(b,A=x^3+3xy+y^3\\ A=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\\ A=x^2-xy+y^2+3xy\\ A=x^2+2xy+y^2=\left(x+y\right)^2=1\)