Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $a$ là số tự nhiên không chia hết cho $5$ thì xét các TH sau:
+) \(a\equiv 1\pmod 5\Rightarrow a^2\equiv 1\pmod 5\)
+) \(a\equiv 2\pmod 5\Rightarrow a^2\equiv 4\pmod 5\)
+) \(a\equiv 3\pmod 5\Rightarrow a^2\equiv 9\equiv 4\pmod 5\)
+) \(a\equiv 4\pmod 5\Rightarrow a^2\equiv 16\equiv 1\pmod 5\)
Như vậy, khi a là số không chia hết cho $5$ thì \(a^2\equiv 1,4\pmod 5\)
----------------------------------------
Ta có:
\(M=a^4(a^4-1)+4(a^4-1)\)
\(M=(a^4-1)(a^4+4)\)
Nếu \(a^2\equiv 1\pmod 5\Rightarrow a^4\equiv 1\pmod 5\)
\(\Rightarrow \left\{\begin{matrix} a^4-1\vdots 5\\ a^4+4\vdots 5\end{matrix}\right.\Rightarrow M=(a^4-1)(a^4+4)\vdots 25\)
Nếu \(a^2\equiv 4\pmod 5\) \(\Rightarrow a^4\equiv 16\equiv 1\pmod 5\)
\(\Rightarrow \left\{\begin{matrix} a^4-1\vdots 5\\ a^4+4\vdots 5\end{matrix}\right.\Rightarrow M=(a^4-1)(a^4+4)\vdots 25\)
Vậy trong mọi TH thì \(M\vdots 25\) (*)
Mặt khác:
\(M=(a-1)(a+1)(a^2+1)(a^2-2a+2)(a^2+2a+2)\)
Nếu a chẵn thì \(a^2-2a+2\vdots 2; a^2+2a+2\vdots 2\)
\(\Rightarrow M\vdots 4\)
Nếu a lẻ thì \(a-1\vdots 2; a+1\vdots 2\Rightarrow M\vdots 4\)
Vậy M luôn chia hết cho $4$ (**)
Từ (*) và (**) kết hợp với (25, 4) nguyên tố cùng nhau suy ra \(M\vdots 100\)
\(8^5+16^4=\left(2^3\right)^5+\left(2^4\right)^4=2^{15}+2^{16}=2^{15}.1+2^{15}.2=2^{15}\left(2+1\right)=2^{15}.3\)
Vậy tổng chia hết cho 3
\(2^8+2^9+2^{10}=2^8.1+2^8.2+2^8.2^2=2^8.\left(1+2+4\right)=2^8.7\)
Vậy tổng chia hết cho 7
3. \(1998=a_1+a_2+a_3\) với \(a,b,c\in N\)
Xét hiệu \(\left(a_1^3+a_2^3+a_3^3\right)-\left(a_1+a_2+a_3\right)\)
\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)\)
\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+a_3\left(a_3^2-1\right)\)
\(=\left(a_1-1\right).a_1.\left(a_1+1\right)+\left(a_2-1\right).a_2.\left(a_2+1\right)+\left(a_3-1\right).a_3.\left(a_3+1\right)\)
Dễ thấy mỗi số hạng là tích 3 số tự nhiên liên tiếp nên ắt tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3
=> Mỗi số hạng chia hết cho 6
=> Hiệu \(\left[\left(a_1^3+a_2^3+a_3^3\right)-\left(a_1+a_2+a_3\right)\right]⋮6\)
Hay \(\left(a_1^3+a_2^3+a_3^3\right)\) và \(\left(a_1+a_2+a_3\right)\) có cùng số dư khi chia cho 6
=> \(\left(a_1^3+a_2^3+a_3^3\right)\) và 1998 có cùng số dư khi chia cho 6
Nên \(\left(a_1^3+a_2^3+a_3^3\right)⋮6\)
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Lời giải:
1)
Ta có : \(A=81^7-27^9-9^{13}=(3^4)^7-(3^3)^9-(3^2)^{13}\)
\(\Leftrightarrow A=3^{28}-3^{27}-3^{26}=3^{26}(3^2-3-1)\)
\(\Leftrightarrow A=5.3^{26}=405.3^{22}\)
Do đó \(A\vdots 405\) (đpcm)
2)
Ta thấy : \(12^{2}\equiv 11\pmod {133}\)
\(\Rightarrow 12^{2n+1}\equiv 11^{n}.12\pmod {133}\)
\(\Rightarrow 12^{2n+1}+11^{n+2}\equiv 11^n.12+11^{n+2}\pmod {133}\)
\(\Leftrightarrow 12^{2n+1}+11^{n+2}\equiv 11^n(12+11^2)\equiv 11^n.133\equiv 0\pmod {133}\)
Do đó: \(12^{2n+1}+11^{n+2}\vdots 133\) (đpcm)
3)
Ta thấy \(A=5x+2y;B=9x+7y\Rightarrow 3A+4B=51x+34y\)
Vì \(51\vdots 17;34\vdots 17\Rightarrow 3A+4B\vdots 17\)
Nếu \(A\vdots 17\Rightarrow 4B\vdots 17\). Mà $(4,17)$ nguyên tố cùng nhau nên \(B\vdots 17\)
Do đó ta có đpcm.
Câu hỏi của sjfdksfdkjlsjlfkdjdkfsl - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link này.