\(x_1\)+\(4x_2\))=f(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

a) Với x1 = x2 = 1 

\(\Rightarrow f\left(1\right)=f\left(1.1\right)\) 

\(\Rightarrow f\left(1\right)=f\left(1\right).f\left(1\right)\) 

\(\Rightarrow f\left(1\right).f\left(1\right)-f\left(1\right)=0\) 

\(\Rightarrow f\left(1\right).\left[f\left(1\right)-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}f\left(1\right)=0\\f\left(1\right)-1=0\end{cases}}\) 

Mà \(f\left(x\right)\ne0\) ( với mọi \(x\in R\) \(;\) \(x\ne0\) )

\(\Rightarrow f\left(1\right)\ne0\)

\(\Rightarrow f\left(1\right)-1=0\) 

\(\Rightarrow f\left(1\right)=1\)

b) Ta có : \(f\left(\frac{1}{x}\right).f\left(x\right)=f\left(\frac{1}{x}.x\right)\)

\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=f\left(1\right)=1\)

\(\Rightarrow f\left(\frac{1}{x}\right).f\left(x\right)=1\)

\(\Rightarrow f\left(\frac{1}{x}\right)=\frac{1}{f\left(x\right)}\)

\(\Rightarrow f\left(x^{-1}\right)=\left[f\left(x\right)\right]^{-1}\) 

24 tháng 12 2018

Bài 1:

nếu x1<x2=>2018.x1-3<2018.x2

=>f(x1)<f(x2)

Bài 2:

nếu x dương=>100x2+2 dương

nếu x âm=>100x2+2 dương vì  xluôn dương

=>f(x)=f(-x)

Bài 3:

nếu x1<x2=>-2019x1+1<2019x2+1

=>f(x1)<f(x2)