Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1
B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25
C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )
= -1( 25 + 12 ) + 3.(-12).(-1)
= -37 + 36
= -1
D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37
Bài 2.
M = 3( x2 + y2 ) - 2( x3 + y3 )
= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )
= 3( x2 + y2 ) - 2( x2 - xy + y2 )
= 3x2 + 3y2 - 2x2 + 2xy - 2y2
= x2 + 2xy + y2
= ( x + y )2 = 12 = 1
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
a) Ta có:\(\left(x+y\right)^2=5^2\)(Vì x + y = 5)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+2.4+y^2=25\)
\(\Leftrightarrow x^2+8+y^2=25\)
\(\Leftrightarrow x^2+y^2=17\)
b) \(\left(x+y\right)^2=3^2\)(Vì x + y = 3)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow2xy+5=9\)
\(\Leftrightarrow2xy=4\)
\(\Leftrightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3\left(5-2\right)=9\)
a) ta có:(x+y)2=x2+2xy+y2=>x2+y2=(x+y)2-2xy
thay x+y=5;xy=4 vào biểu thức ta có:
52-2×4=25-8=17
ta có:
a) (x2 - 3x + xy - 3y) : (x + y)
= [x(x - 3) + y(x - 3)] : (x + y)
= (x + y)(x - 3) : (x + y)
= x - 3
b) (x2 - y2 + 6x + 9) : (x + y + 3)
= [(x2 + 6x + 9) - y2] : (x + y + 3)
= [(x + 3)2 - y2] : (x + y + 3)
= (x + y + 3)(x - y + 3) : (x + y + 3)
= x - y + 3
Mình hướng dẫn bạn nhé :))
a) \(A=\left(x+y\right)^2-2xy=15^2-2\cdot\left(-100\right)=...\)
b) \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=15^3-3.\left(-100\right).15=...\)
A=3.(5-xy)
ta có: \(\left(x+y\right)^2=9\Leftrightarrow x^2+2xy+y^2=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2\)
=> A=3(5-2)=9
a: \(xy=\dfrac{\left(x-y\right)^2-x^2-y^2}{-2}=\dfrac{5^2-15}{-2}=\dfrac{10}{-2}=-5\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)\)
\(=5^3+3\cdot5\cdot\left(-5\right)\)
=125-75=50
b: \(8x^3+y^3=\left(2x+y\right)^3-3\cdot2x\cdot y\left(2x+y\right)\)
\(=3^3-6\cdot23\cdot3\)
=27-18x23
=-387