K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

1. \(S=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(S=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)

\(S=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}\)

\(S=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)

\(S=\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)

\(S=\frac{1}{100}.\frac{101}{2}\)

\(S=\frac{101}{200}\)

2. 

Vì 3x - 5y \(⋮\)23

\(\Rightarrow\)6 . ( 3x - 5y ) \(⋮\)23

Ta có : 6 . ( 3x - 5y ) + ( 5x - 16y )

\(\Leftrightarrow\)( 18x - 30y ) + ( 5x - 16y )

\(\Leftrightarrow\)23x - 46y

\(\Leftrightarrow\)23 . ( x - 2y ) \(⋮\)23

Vì 18x - 30y \(⋮\)23 mà ( 5 ; 23 ) = 1

\(\Rightarrow\)5x - 16y \(⋮\)23

5 tháng 5 2017

SKT_NTT sai câu 1 rồi từ đoạn thứ 2

7 tháng 5 2017

xét hiệu A=5(3x-5y)-3(5x-16y)=23y

=> A  chia hết cho 23,mà 3x-5y chia hết cho 23=>3(5x-16y) chia hết cho 23

Mà (3;23)=1=>5x-16y chia hết cho 23(đpcm) 

20 tháng 5 2017

Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

A=\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)

Ta thấy :

\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\)

\(\dfrac{1}{100.100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

Nhân xét :

\(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};\)

\(...;\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+...+\)

\(\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{99}{100}\)

\(A< \dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\)

20 tháng 5 2017

Bài 1)

Đặt \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4};....;\dfrac{1}{100^2}=\dfrac{1}{100.100}< \dfrac{1}{99.100}\)\(\Rightarrow\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) A < \(1-\dfrac{1}{100}\) < 1 \(\Rightarrow\) A < 1

Vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)< 1

27 tháng 2 2020

A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)

=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)

=15(2+25+29+...+217)

=30.(1+2⁴+28+...+216) chia hết cho 10

=> A có tận cùng là 0

27 tháng 2 2020

b) Có a-5b chia hết cho 17

=> 10(a-5b) chia hết cho 17.

=> 10a-50b chia hết cho 17.

Mà 51b= 17×3b chia hết cho 17

=> 10a-50b+51b chia hết cho 17

=> 10a+b chia hết cho 17

16 tháng 4 2017

a) Giải:

Ta có: \(4n-5=4\left(n-3\right)+7\)

Để \(\left(4n-5\right)⋮\left(n-3\right)\Leftrightarrow7⋮n-3\)

\(\Rightarrow n-3\inƯ\left(7\right)\)

\(Ư\left(7\right)\in\left\{\pm1;\pm7\right\}\)

Nên ta có bảng sau:

\(n-3\) \(n\)
\(1\) \(4\)
\(-1\) \(2\)
\(-7\) \(-4\)
\(7\) \(10\)

Vậy \(n=\left\{2;4;-4;10\right\}\)

b) Ta có:

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét:

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)

18 tháng 5 2017

a)Ta có:\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b^2+b}< \dfrac{1}{b^2}\)(do b>1)

\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{\left(b-1\right)b}=\dfrac{1}{b^2-b}>\dfrac{1}{b^2}\)(do b>1)

b)Áp dụng từ câu a

=>\(\dfrac{1}{2}-\dfrac{1}{3}< \dfrac{1}{2^2}< \dfrac{1}{1}-\dfrac{1}{2}\)

\(\dfrac{1}{3}-\dfrac{1}{4}< \dfrac{1}{3^2}< \dfrac{1}{2}-\dfrac{1}{3}\)

.........................

\(\dfrac{1}{9}-\dfrac{1}{10}< \dfrac{1}{9^2}< \dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}< S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

=>\(\dfrac{1}{2}-\dfrac{1}{10}< S< 1-\dfrac{1}{9}\)

=>\(\dfrac{2}{5}< S< \dfrac{8}{9}\)(đpcm)

18 tháng 5 2017

thanks bn nhìu

3 tháng 4 2017

\(A=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}=\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\)\(A=\dfrac{1}{1.1}+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}< \dfrac{1}{1.1}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\left(1\right)\)Mà :\(\dfrac{1}{1}+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=\dfrac{1}{1}+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=1+1-\dfrac{1}{50}=1+\dfrac{49}{50}=\dfrac{99}{50}< \dfrac{100}{50}=\dfrac{1}{2}\left(2\right)\)

Từ (1) và (2) ta suy ra A<2

6 tháng 4 2017

B có 30 số hạng, chia B thành 5 nhóm, mỗi nhóm có 6 số hạng như sau:

\(B=\left(2^1+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{25}+2^{26}+2^{27}+2^{28}+2^{29}+2^{30}\right)\)

\(B=2^1\left(1+2+2^2+2^3+2^4+2^5\right)+2^7\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{25}\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(B=2^1.63+2^7.63+...+2^{25}.63\)

\(B=63.\left(2^1+2^7+...+2^{25}\right)⋮63\)

\(B=21.3.\left(2^1+2^7+...+2^{25}\right)⋮21\left(đpcm\right)\)