Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C x y z K
Đặt AB = x>0 , AC = y>0 , BC = z>0
- Theo đề bài , ta có : \(\begin{cases}xy=32\sqrt{6}\\\frac{x}{y}=\frac{\sqrt{6}}{3}\end{cases}\) \(\Leftrightarrow\begin{cases}x=8\\y=4\sqrt{6}\end{cases}\)
Theo định lí Cosin, ta có : \(x^2=y^2+z^2-2yz.cos45^o\Leftrightarrow64=96+z^2-8\sqrt{3}z\)\(\Leftrightarrow\left[\begin{array}{nghiempt}z=4+4\sqrt{3}\\z=-4+4\sqrt{3}\end{array}\right.\)
Vậy BC = \(4+4\sqrt{3}\) hoặc BC = \(4\sqrt{3}-4\)
- Theo định lí Cosin, ta có : \(y^2=x^2+z^2-2xz.cosB\Rightarrow cosB=\frac{x^2+z^2-y^2}{2xz}\)
+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4+4\sqrt{3}\end{cases}\) thì \(cosB=\frac{1}{2}\Rightarrow\widehat{B}=60^o\)
+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4\sqrt{3}-4\end{cases}\) thì \(cosB=-\frac{1}{2}\Rightarrow\widehat{B}=120^o\)
- Để tính diện tích tam giác ABC, ta áp dụng công thức \(S_{\Delta ABC}=\frac{1}{2}BC.AC.sinC\)
Chứng minh như sau : Kẻ đường cao AK (K thuộc BC)
Trong tam giác vuông AKC có : \(AK=sinC.AC\)
Ta có : \(S_{\Delta ABC}=\frac{1}{2}BC.AK=\frac{1}{2}BC.AC.SinC\)
+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4+4\sqrt{3}\end{cases}\) thì \(S_{\Delta ABC}=\frac{1}{2}AC.BC.sin45^o=\frac{1}{2\sqrt{2}}.4\sqrt{6}.\left(4+4\sqrt{3}\right)=24+8\sqrt{3}\)
+Với \(\begin{cases}x=8\\y=4\sqrt{6}\\z=4\sqrt{3}-4\end{cases}\) thì \(S_{\Delta ABC}=\frac{1}{2}AC.BC.sin45^o=\frac{1}{2\sqrt{2}}.4\sqrt{6}.\left(-4+4\sqrt{3}\right)=24-8\sqrt{3}\)
Trong tg AHB vuông tại H có AH = AB.sin 70 độ => AB = AH/sin 70 = 5 : 0.94 = 4,7 (cm)
Tương tự: AC= AH/sin 35 độ = 5 / 0,574 = 8,71 (cm)
+ BC = BH + HC = AH . cotg 70 + AH . cotg 35 (bạn tự tính nha)
SABC = 1/2 .AH.BC = ...... (cm2) Thế số vào tính đi nhé ^^