Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)
b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)
c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)
Học tốt!!!!
1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn
a. a/b < 1 => a < b => a.m < b.m => a.b +a.m < a.b +b.m => \(\frac{a}{b}<\frac{a+m}{b+m}\)
b. a/b > 1 => a > b => a.m > b.m => a.b +a.m > a.b +b.m => \(\frac{a}{b}>\frac{a+m}{b+m}\)
a)ta có:\(\frac{a}{b}=\frac{a.\left(b+m\right)}{b.\left(b+m\right)}=\frac{ab+am}{b^2+bm}\)
\(\frac{a+m}{b+m}=\frac{\left(a+m\right)b}{\left(b+m\right)b}=\frac{ab+bm}{bm+b^2}\)
vì a<b =>am<bm=>ab+am<ab+bm
hay\(\frac{a}{b}< \frac{a+m}{b+m}\)
b)tương tự như phần a
Vì \(a< b< c< d< m< n\)
\(\Rightarrow\hept{\begin{cases}a+c+m< 3a\\a+b+c+d+m+n< 6a\end{cases}}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{3a}{6a}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)
Bài giải
Ta có : \(a< b\text{ }\Rightarrow\text{ }2a< a+b\)
\(c< d\text{ }\Rightarrow\text{ }2c< c+d\)
\(m< n\text{ }\Rightarrow\text{ }2m< m+n\)
\(\Rightarrow\text{ }2a+2c+2m< \left(a+b+c+d+m+n\right)\) \(\Leftrightarrow\text{ }2\left(a+c+m\right)< \left(a+b+c+d+m+n\right)\)
\(\Rightarrow\text{ }\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
a) Vì a > b
=> a.n > b.n
=> a.n + a.b > b.n + a.b
=> a.(b + n) > b.(a + n)
=> a/b > a+n/b+n ( đpcm)
Câu b và c lm tương tự
Ta có x < y ; m > 0
=> \(\frac{a}{m}< \frac{b}{m}\)
=> a < b (vì m > 0)
Lại có x = \(\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}< \frac{a+b}{2m}=y\)(vì a < b nên a + a < a + b)
=> x < z (1)
Mặt khác \(y=\frac{b}{m}=\frac{2b}{2m}=\frac{b+b}{2m}>\frac{a+b}{2m}=z\)(vì b > a nên b +b > b + a)
=> y > z (2)
Từ (1) và (2) => x < z < y (đpcm)
ta có
a,\(\frac{a}{b}< 1\Leftrightarrow a< b\Leftrightarrow a+m< b+m\)
vì \(a+m< b+m\)
nên \(\frac{a+m}{b+m}< 1\)
b,Ta có \(a+b>1\Leftrightarrow a+m>b+m\)
Vì \(a+m>b+m\)
nên \(\frac{a+m}{b+m}>1\)