K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

n^2= (2k+1)^2=4k^2+4k+1

k=2t=> 16t^2+8t+1  chia 8 luon du 1

k=(2t+1)=> 4(4t^2+4t+1) +4(2t+1)+1=16t^2+24t+8+1 chia 8 du 1

ket luan:  so du n^2 chia 8 luon du 1

a^2+b^2-c^2=2016=2^3.3^2.23

4m^2+4m+4n^2+4n-4p^2-4p+2=2016

2(m^2+m+n^2+n-p^2-p)+1=1008 => khong ton tai 

VP chan VT luon le

25 tháng 11 2016

bài này khó quá, tớ làm được nhưng dài lắm

24 tháng 11 2015

Câu 2:

Ta có: 3n +8 chia hết cho n + 2 (1)

Mà: n+2 chia hết cho n + 2

=>3(n+2) chia hết cho n + 2

=>3n+6 chia hết cho n + 2 (2)

Từ (1) và (2) =>(3n+8)-(3n+6) chia hết cho n + 2

=>2  chia hết cho n + 2

=>n+2 thuộc Ư(2)

=> n+2thuộc {1;2}⇒n+2∈{1;2}

⇒n∈{0}

Vậy n=0

Tick cho mình đi !

14 tháng 7 2018

1) Gọi hai số đó là a và b

Ta có:   a+b=3(a-b) 

        => a+b = 3a -3b 

=> a+b +3b = 3a

=> a+ 4b = 3a => 4b = 2a  => 2b = a => a : b = 2

ĐS : 2

2) Gọi thương của phép chia A chia cho 54 là b

Ta có : a : 54 = b ( dư 38 ) => a = 54b + 38 

=> a = 18.3b + 18.2 + 2 = 18.( 3b + 2 ) + 2

=> a chia cho 18 được thương là 3b + 2 ; dư 2

Theo đề bài 3b + 2 = 14 => 3b = 12 => b = 4

Vậy a = 54.4 + 38 = 254 

3)a) Tích của 3 số tận cùng là 1 => tích lẻ => cả 3 số trong đó đều là số lẻ

Mà Tổng của 3 số lẻ là 1 số lẻ nên không thể tận cùng là 4 

=> Không tồn tại 3 số như vậy

b) Tích 4 số là số lẻ => cả 4 số đó đều là số lẻ  

Vì tổng của 2 số lẻ là số chẵn nên tổng của 4 số  lẻ là số chẵn  => Không tồn tại  4 số thỏa  mãn tổng là số lẻ 

~ Học tốt ~

18 tháng 12 2018

xem trên mạng nhé 

18 tháng 12 2018

mình k thấy bạn ak !

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{101}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{101}-2\)

\(a+2=2^{101}-2+2=2^{201}\)

\(\Rightarrow x=101\)

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{99}-2\)

\(a+2=2^{99}-2+2=2^{99}\)

\(\Rightarrow x=99\)

\(A=7+7^1+7^2+...+7^8\)

\(=7+7+..9+..3+,,1+..7+..9+..3+...1\)

Vậy A là số lẻ

23 tháng 6 2019

#)Bạn tham khảo nhé :

a) Với 7n là số lẻ với n thuộc N* 

Mà tổng A có 8 số hạng đều là số lẻ 

=> A là số chẵn

b) Ta có :

\(A=7+7^2+...+7^8\)

\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)

\(A=7\left(1+7^2\right)+7^2\left(1+7^2\right)+7^5\left(1+7^2\right)+7^6\left(1+7^2\right)\)

\(A=7.50+7^2.50+7^5.50+7^6.50\)

\(A=50\left(7+7^2+7^5+7^6\right)\)

Vì 50 chia hết cho 5 => A chia hết cho 5

c) Vì 50(7 + 72 + 75 + 76 ) = ...0

=> Tổng A có tận cùng = 0