Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K
Ta có: AD= BC (gt)
Góc D = góc C
=> tam giác AHD= tam giác BKC (cạnh huyền- góc nhọn)
=> DH= CK ( 2 cạnh tương ứng)
xét tam giác AHD và tam giác BKC có:
AD = BC (gt)
góc ADH = góc BCK (gt)
góc AHD = góc AKC = 900
=> tam giác ... = tam giác .... (ch-gn)
=> DH = CK (cạnh tương ứng)
t i c k nha!! 463745768658897697696789768568654
A B D C H K
Có hình thang ABCD cân
⇒AD=BC ; ∠ADC=∠BCD
Có AH⊥DC
⇒∠AHD=∠AHC
Có BK⊥DC
⇒∠BKC=∠BKD
* Xét △AHD(∠AHD=90) và ΔBKC(∠BKC=90) có
AD=BC(c/m trên)
∠ADH=∠BCK
⇒△AHD=ΔBKC( cạnh huyền-góc nhọn)
⇒DH=KC(2 cạnh tương ứng)(đpcm)
Xét ΔAHD và ΔBKC có:
\(\widehat{AHD}=\widehat{AKC}=90\left(gt\right)\)
AD=BC(gt)
\(\widehat{D}=\widehat{C}\left(gt\right)\)
=>ΔAHD=ΔBKC (cạnh huyền-góc nhọn)
=>DH=CK
A B D H K C
Xét hình thang cân ABCD ( AB // CD )
\(\Rightarrow\hept{\begin{cases}\widehat{D}=\widehat{C}\\AD=BC\end{cases}\left(t/c\right)}\)
Xét \(\Delta ADH=\Delta BCK\)
\(\hept{\begin{cases}\widehat{AHD}=\widehat{BKC}\left(=90^o\right)\\AD=BC\left(cmt\right)\\\widehat{D}=\widehat{C}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADH=\Delta BCK\) ( ch - gn )
\(\Rightarrow AH=BK\) ( 2 cạnh tương ứng )
b) Vì \(\Delta ADH=\Delta BCK\left(cmt\right)\)
\(\Rightarrow DK=CK\) ( 2 cạnh tương ứng )
Chúc bạn học tốt !!!
ai trả lời đc tui cho 1 acc liên quân cấp 30 có 16 tướng và 6 trang phục
tự vẽ hình , k ib mk vẽ hình cho
a)
xét tam giác AHD vuông và tam giác vuông BKC có AD=BC( hình thang cân )
góc D= góc C ( hình thang cân )
=> tam giác AHD = tam giác BKC ( trường ohjwp cạnh huyền canh góc vuông )
=> DH=CK
b)
có AB//HK ; AH//BK (cùng vuông góc DC=>//) và AHK= 90 độ => ABKH là hcn => AB=HK=10cm và ABKH là hcn => AH=BK
có DH+CK+HK=DC
=> mà DH=Ck => 2CK+HK=CD => 2CK+10=26=> 2CK=16=>CK=8
có tam giác BKC vuông tại K => \(BK^2+KC^2=BC^2\)
=> \(BK^2=BC^2-KC^2\)
\(\Rightarrow BK^2=17^2-8^2\)
\(\Rightarrow BK^2=225\Rightarrow BK=15\)
mà BK=AH ( mình chứng minh ở trên r đó b lướt lên là thấy )
=> AH=15
add acc lq nha , k cần ,add đưa nik lq , >.< <3
TỨ GIÁC ABHK LÀ HCN DẤU HIỆU 1
B)
TAM GIÁC AHD= TAM GIÁC BCK (CH-CGV)VÌ
GÓC H = GÓC K ( CÙNG BẰNG 90 ĐỘ)
AH=AK(ABHK LÀ HCN)
AD=BC(ABCD LÀ HÌNH THANG CÂN)
SUY RA DH=KC ( HAI CẠNH TƯƠNG ỨNG)
b: AD+BC>CD-AB
=>AD+AB>CD-BC
mà AD+AB>BD
và CD-BC<BD
nên AD+AB>CD-BC(ĐPCM)
a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
Do đo: ΔAHD=ΔBKC
Suy ra: DH=CK