K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2015

a, mẫu số khác 0 -> n khác 1. Vì 5 là số nguyên tố nên muôn A tối giản ( tử số và mẫu số ko cùng chia hết cho số nào khác 1 ) thì 5 ko chia hết cho n-1 hoặc n-1 ko đc chia hết cho 5.-> n khác 5k+1 ( k thuộc Z)

b. Gọi UCLN (n,n+1) = d -> n chia hết cho d; n+1 chia hết cho d 

->(n+1) - n chia hết cho d -> 1 chia hết cho d -> d=1

UCLN(n,n+1) = 1 thì phân số tối giản

c. A= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....+1/49 - 1/50

= 1- 1/50 <1 ( Vì trừ đi 1 số lớn hơn 0)

 

14 tháng 4 2015

b;Gọi ƯCLN (n;n+1) là :d

ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy \(\frac{n}{n+1}\)

     tối giản

 

15 tháng 4 2019

a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)

Vậy điều kiện của n để A là phân số là \(n\ne1\)

Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)

=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)

Lập bảng :

n - 11-15-5
n206-4

b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy : .....

Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)

để A là số nguyên thì n-1 chia hết cho 5

suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}

* Xét trường hợp:

TH1 n-1=1 suy ra n=2(TM)

TH2 n-1=-1 suy ra n=0 (TM)

TH3 n-1=5 suy ra n=6(TM)

TH4n-1=-5 suy ra n=-4(TM)                                  ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)

vậy n thuộc { -4;0;2;6}

# HỌC TỐT #

4 tháng 5 2017

1) a) để A là số nguyên thì \(n\ne1\)

b) để  \(A=\frac{5}{n-1}\)là số nguyên thì n-1 là ước nguyên của 5

\(n-1=1\Rightarrow n=2\)

\(n-1=5\Rightarrow n=6\)

\(n-1=-1\Rightarrow n=0\)

\(n-1=-5\Rightarrow n=-4\)

kl : n\(\in\){ 2; 6; 0; -4 }

2) Gọi d là ước chung lớn nhất của n và n+1 

\(\Rightarrow n⋮d;n+1⋮d\)

\(\Rightarrow\left(n+1-n\right)⋮d\)

\(\Rightarrow1⋮d\)

Vì ước chung lớn nhất của n và n+1 là 1 nên n/n+1 là phân số tối giản

3)     Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức ta có

\(\frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

..............................

\(\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{49}-\frac{1}{50}< 1\)

\(\Rightarrow\)\(1-\frac{1}{50}< 1\)

\(\Rightarrow\)\(\frac{49}{50}< 1\Rightarrow dpcm\)

4)     \(S=\frac{2^{2009}-1}{1-2^{2009}}\)

Ai thấy đúng thì ủng hộ mink nha !!!

21 tháng 7 2015

goi d=UCLN(n3+2n;n4+3n2+1)          (d\(\in\)N*)

\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d

n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)\(\in\)U(1)ma d lon nhat , d\(\in\)Nnen d=1 

do đó phân số trên là tối giản

9 tháng 3 2018

giỏi lắm hoàng cảm ơn nhiều

4 tháng 5 2016

bó tay

10 tháng 7 2016

vyitclucryzjtfuyddiydiydxdgzth

29 tháng 4 2017

a) Để A là phân số thì 5 không chia hết cho n-1 hay n-1 không phải Ư(5) mà Ư(5)={-5;-1;1;5}

Ta có bảng sau:

\(n-1\ne\) -5 -1 1 5
\(n\ne\) -4 0 2 6

Vậy n\(\ne\left\{-4;0;2;6\right\}\)thì A là phân số

n=0 => A=\(\dfrac{5}{0-1}=-5\)

n=10 => A=\(\dfrac{5}{10-1}=\dfrac{5}{9}\)

n=-2 => A=\(\dfrac{5}{-2-1}=-\dfrac{5}{3}\)

Để A là số nguyên =>5 chia hết cho n-1 <=>n-1 là Ư(5)

Từ bảng trên => n={-4;0;2;6} thì A nguyên

b) Do n là Số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp

=>n và n+1 nguyên tố cùng nhau

=>phân số \(\dfrac{n}{n+1}\)tối giản(dpcm)

c)\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\left(đpcm\right)\)

29 tháng 4 2017

c) 1/1.2 + 1/2.3 + 1/3.4 + .....+ 1/49.50

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ......+ 1/49 - 1/50

tới bước đây mik làm gọn lại chút nha

= 1/1 - 1/50

=49/50

Suy ra : 49/50 <1 ( điều phải chứng minh )

26 tháng 5 2016

\(A=\frac{n-5}{n+1}\)

Để A có giá trị nguyên 

=> n-5 chia hết n+1 

=> (n+1)-6 chia  hết n+1

=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)

Ta có bảng : 

n+11-12-23-36-6
n0-21-32-45-7

Câu b tự làm

26 tháng 5 2016

a, Để a nguyên thì n-5 chia hết cho n+1

suy ra n-1+6 chia hết cho n-1

Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1

Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}

suy ra n thuộc {2;0;3;-1;4;-2;7;-5}

Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}

b, Gọi d là ước nguyên tố chung của n-5 và n+1

Suy ra n-5 chia hết cho d, n+1 chia hết cho d

Suy ra (n+1)-(n-5) chia hết cho d

suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d

Do d nguyên tố nên d thuộc {2;3}

Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)

Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)

Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
2 tháng 7 2015

a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:

2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+2 chia hết cho d=> 6n+4 chia hết cho d

=> 6n+4 - (6n+3) chia hết cho d

=> 1 chia hết cho d

=>ƯCLN(2n+1,3n+2)=1

=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)