Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{c}{d}=\frac{b}{c}\left(2\right)\)
Từ (1);(2) dễ dàng suy ra:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a\cdot b\cdot c}{b\cdot c\cdot d}\)
\(=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5
A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )
A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3
A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )
A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )
b) x = -1, y = 1
Thay x = -1, y = 1 vào đa thức A ta được :
\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)
\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)
\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)
\(=-6+4+\left(-2\right)\)
\(=-4\)
Vậy A = -4 khi x = -1 , y = 1
\(a^3+b^3=2\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=2c^3-16d^3+c^3+d^3\)
\(=3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)
Ta có: \(a^3+b^3+c^3+d^3-a-b-c-d\)
\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)
\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\)
Tích 3 số nguyên liên tiếp chia hết cho 3 nên
\(\left(a-1\right)a\left(a+1\right)⋮3\)
\(\left(b-1\right)b\left(b+1\right)⋮3\)
\(\left(c-1\right)c\left(c+1\right)⋮3\)
\(\left(d-1\right)d\left(d+1\right)⋮3\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)\)
\(+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)⋮3\)
hay \(a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)
Từ (1) và (2) suy ra \(a+b+c+d⋮3\left(đpcm\right)\)
-Ta có: a3-a= a.(a-1).(a+1) (với a thuộc Z). Mà a.(a-1).(a+1) là tích của 3 số nguyên liên tiếp nên a.(a-1).(a+1) chia hết cho 3.
=> a3-a chia hết cho 3.
-Chứng minh tương tự ta có b^3-b chia hết cho 3 và c^3-c chia hết cho 3 với mọi b,c thuộc Z.
=> a3+b3+c3 -(a+b+c) luôn chia hết cho 3 với mọi a,b,c thuộc Z.
=> nếu a3+b3+c3 chia hết cho 3 thì a+b+c chia hết cho 3 và điều ngược lại cũng đúng.
Vậy đpcm.chúc bn hok tốt
767ywyy7h
jyyuuj
kkkuuuuuuuuuuuuuuuuuktyht chiu