K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Ta có công thức tổng quát của số hạng trong tổng trên có dạng:

\(x_n=\frac{n\left(n+3\right)}{\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n+2-2}{n^2+3n+2}\)

\(=1-\frac{2}{n^2+3n+2}=1-\frac{2}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow\frac{1.4}{2.3}=1-\frac{2}{2.3}\)

\(\frac{2.5}{3.4}=1-\frac{2}{3.4}\)

\(\frac{3.6}{4.5}=1-\frac{2}{4.5}\)

....

\(\frac{98.101}{99.100}=1-\frac{2}{99.100}\)

\(\Rightarrow N=98-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(=98-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98-2\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(=98-1+\frac{1}{50}=97+\frac{1}{50}\)

Vậy 97 < N < 98

16 tháng 2 2020

Bạn tham khảo link này: https://h.vn/hoi-dap/question/537598.html

14 tháng 8 2018

ta có A = \(\frac{1.4}{2.3}+\frac{2.5}{3.4}+....+\frac{98.101}{99.100}=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{4950}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{4950}\right)\)(có 98 chữ số 1)

 \(=98-\left(\frac{1}{3}+\frac{1}{6}+....+\frac{1}{4950}\right)\)=> A < 98

đi rùi giải tiếp

19 tháng 7 2016

ai kb voi mk ko !!!

mk cho

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha 

7 tháng 6 2017

mình vừa mới trả lời xong đấy 

Câu hỏi của Do Not Ask Why - Toán lớp 7 - Học toán với OnlineMath

7 tháng 6 2017

Ta có :

A = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

A = \(\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

A = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

A = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

A =  \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Tách A thành 2 nhóm,ta được :

A = \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Lại có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75}\text{ }\text{ }\)

            \(\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\text{ }\text{ }\)

A > \(\left(\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{75}.25+\frac{1}{100}.25\)

\(=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

A < \(\left(\frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}\right)+\left(\frac{1}{76}+\frac{1}{76}+...+\frac{1}{76}\right)=\frac{1}{51}.25+\frac{1}{76}.25< \frac{1}{50}.25+\frac{1}{75}.25\)

\(=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(\frac{7}{12}< A< \frac{5}{6}\)

7 tháng 6 2017

Bạn SKT_NTT làm đúng rồi nha