Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
Silver bulletsoyeon_Tiểubàng giảiPhương AnNguyễn Huy TúHoàng Lê Bảo NgọcTrương Hồng Hạnh giải giúp mk bài hình đó đi
Bài 1: Ta có hình vẽ sau:
B A C M E
a)Xét ΔABM và ΔECM có:
BM = CM (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đỗi đỉnh)
MA = ME (gt)
=> ΔABM = ΔACM (c.g.c) (đpcm)
b) Vì ΔABM = ΔECM (ý a)
=> \(\widehat{MAB}=\widehat{MEC}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CE (đpcm)
Bài 5: Ta có hình vẽ sau:
O A B D C x y E
a) Vì OA = OB (gt) và AC = BD (gt)
=> OC = OD
Xét ΔOAD và ΔOBC có:
OA = OB (gt)
\(\widehat{O}\) : Chung
OC = OD (cm trên)
=> ΔOAD = ΔOBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)(đpcm)
b) Vì ΔOAD = ΔOBC(ý a)
=> \(\widehat{OBC}=\widehat{OAD}\) và \(\widehat{ODA}=\widehat{OCB}\)
(những cặp góc tương ứng)
Xét ΔEAC và ΔEBD có:
\(\widehat{OBC}=\widehat{OAD}\) (cm trên)
AC = BD (gt)
\(\widehat{ODA}=\widehat{OCB}\) (cm trên)
=> ΔEAC = ΔEBD (g.c.g) (đpcm)
c) Vì ΔEAC = ΔEBD (ý b)
=> EA = EB (2 cạnh tương ứng)
Xét ΔOAE và ΔOBE có:
OA = OB (gt)
\(\widehat{OBC}=\widehat{OAD}\) (đã cm)
EA = EB (cm trên)
=> ΔOAE = ΔOBE (c.g.c)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
=> OE là phân giác của \(\widehat{xOy}\)
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Hình bạn tự vẽ nha
c. Chứng minh D, K, E thẳng hàng.
Ta có: ^EBK + ^ABK = 180 độ (2 góc kề bù)
^CDK + ^ADK = 180 độ (2 góc kề bù)
^ABK = ^ADK (tam giác ABK = tam giác ADK)
=> ^EBK = ^CDK
Xét tam giác EBK và tam giác CDK ta có:
EB = CD (gt)
^EBK = ^CDK (cmt)
BK = DK (tam giác ABK = tam giác ADK)
=> tam giác EBK = tam giác CDK (c - g - c)
=> ^EKB = ^CKD (2 góc tương ứng)
Mà 2 góc này ở vị trí đối đỉnh
Nên D, E, K thẳng hàng
Bài 2 :
A B D C M K F
a) Xét \(\Delta ABM,\Delta ADM\) có :
\(AB=AD\left(gt\right)\)
\(AM:chung\)
\(BM=DM\) (M là trung điểm của BD)
=> \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)
b) Từ \(\Delta ABM=\Delta ADM\) (cmt - câu a) suy ra :
\(\widehat{AMB}=\widehat{AMD}\) (2 góc tương ứng)
Mà : \(\widehat{AMB}+\widehat{AMD}=180^o\left(Kềbù\right)\)
=> \(\widehat{AMB}=\widehat{AMD}=\dfrac{180^o}{2}=90^o\)
=> \(AM\perp BD\rightarrowđpcm\)
c) Xét \(\Delta ABK,\Delta ADK\) có :
AB = AD (gt)
\(\widehat{BAK}=\widehat{DAK}\) (\(\Delta ABM=\Delta ADM\))
AK :Chung
=> \(\Delta ABK=\Delta ADK\left(c.g.c\right)\)
d) Ta có : \(\left\{{}\begin{matrix}\widehat{ABK}+\widehat{FBK}=180^{^O}\\\widehat{ADK}+\widehat{CDK}=180^{^O}\end{matrix}\right.\left(Kềbù\right)\)
Lại có : \(\widehat{ABK}=\widehat{ADK}\) (do \(\Delta ABK=\Delta ADK\left(c.g.c\right)\)
Nên : \(180^o-\widehat{ABK}=180^o-\widehat{ADK}\)
\(\Leftrightarrow\widehat{FBK}=\widehat{CDK}\)
Xét \(\Delta BFK,\Delta DCK\) có :
\(BF=CD\left(gt\right)\)
\(\widehat{FBK}=\widehat{CDK}\left(cmt\right)\)
\(BK=DK\) (\(\Delta ABK=\Delta ADK\left(c.g.c\right)\))
=> \(\Delta BFK=\Delta DCK\left(c.g.c\right)\)
=> FK = DK (2 cạnh tương ứng)
=> K là trung điểm của FD
=> F, D, K thẳng hàng.