Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài 3 cạnh lần lượt là : 2k;3k;4k2k;3k;4k
Đặt p=2k+3k+4k2=9k2p=2k+3k+4k2=9k2
Áp dụng công thức tính đường cao ta có:
ha=2.√p(p−a)(p−b)(p−c)aha=2.p(p−a)(p−b)(p−c)a
Ta tính được haha theo k
Giải: Đặt các cạnh là 2a,3a,4a thì các chiều cao là S/2a,S/3a,S/4a chúng tỉ lệ 3/2:1:3/4 hay là 6:4:3
gọi 2 Cạnh lần lượt là 2x;3x;4x
đường cao tương tứng lần lượt là : \(h_1=\frac{2S}{2x};h_2=\frac{2S}{3x};h_3=\frac{2S}{4x}\)VỚI S LÀ DIỆN TÍCH TAM GIÁC
CÓ tỉ số :\(h_1:h_2:h_3=\frac{2S}{2x}:\frac{2S}{3x}:\frac{2S}{4x}=1:\frac{2}{3}:\frac{1}{2}\)
https://diendantoanhoc.net/topic/77320-d%E1%BB%99-dai-cac-c%E1%BA%A1nh-c%E1%BB%A7a-tam-giac-t%E1%BB%89-l%E1%BB%87-v%E1%BB%9Bi-234-h%E1%BB%8Fi-chi%E1%BB%81u-cao-t%C6%B0%C6%A1ng-%E1%BB%A9ng-v%E1%BB%9Bi-cac-c%E1%BA%A1nh-do-t%E1%BB%B7-l%E1%BB%87-v%E1%BB%9Bi-nhau-theo-t%E1%BB%89-s%E1%BB%91/
Gọi các cạnh của tam giác lần lượt là : x ; y ; z
=> x : y : z = 2 : 3 : 4
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Mà tổng ba góc của 1 tam giác là : 180o
Theo tính chất dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{180^o}{9}=20^o\)
\(\Rightarrow x=20^o.2=40^o\)
\(y=20^o.3=60^o\)
\(z=20^o.4=80^o\)
Vậy độ dài các cạnh của tam giác đó lần lượt là :
40o ; 60o ; 80o .
Gọi a,b,c là 3 cạnh của t/g ; x,y,z là chiều cao tương ứng của t/g ; S là diện tích của t/g
Theo bài ra, ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\left(1\right)\);\(a=\frac{2S}{x};b=\frac{2S}{y};c=\frac{2S}{z}\left(2\right)\)
Thay (2) vào (1) ta được:\(\frac{\frac{2S}{x}}{2}=\frac{\frac{2S}{y}}{3}=\frac{\frac{2S}{z}}{4}\)
\(\Leftrightarrow\frac{2S}{2x}=\frac{2S}{3y}=\frac{2S}{4z}\Leftrightarrow\frac{1}{2x}=\frac{1}{3y}=\frac{1}{4z}\Leftrightarrow2x=3y=4z\)
\(\Leftrightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Vậy 3 chiều cao tỉ lệ với 6;4;3
a_Câu hỏi của Thiên Anh Triệu - Toán lớp 7 - Học toán với OnlineMath
b_tham khỏa Tìm hai số khác không biết tổng, hiệu, tích của chúng tỉ lệ với $5\ ;\ 1\ ;\ 12$ - Đại số - Diễn đàn Toán học