K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2017

\(VT=\frac{c+ab}{a+b}+\frac{b+ac}{a+c}+\frac{a+bc}{b+c}\)

\(=\frac{c\left(a+b+c\right)+ab}{a+b}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{a\left(a+b+c\right)+bc}{b+c}\)

\(=\frac{ac+bc+c^2+ab}{a+b}+\frac{ab+b^2+cb+ac}{a+c}+\frac{a^2+ab+ac+bc}{b+c}\)

\(=\frac{\left(c+a\right)\left(c+b\right)}{a+b}+\frac{\left(b+c\right)\left(a+b\right)}{a+c}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

Hình như là \(\ge2\) mới đúng bạn ạ :v

11 tháng 10 2017

lm như thế nào nx ạk

16 tháng 10 2017

Ta có BĐT phụ: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)*đúng*

\(\Rightarrow a^5+b^5+ab\ge a^2b^2\left(a+b\right)+ab=ab\left(ab\left(a+b\right)+1\right)\)

\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\ge\dfrac{ab}{ab\left(ab\left(a+b\right)+1\right)}=\dfrac{1}{ab\left(a+b\right)+1}\)

\(=\dfrac{c}{abc\left(a+b\right)+c}=\dfrac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{a+b+c}{a+b+c}=1=VP\)

Khi \(a=b=c=1\)

3 tháng 8 2019

Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath

10 tháng 11 2017

Cái này không khó :v

Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

Face khác ;v, theo AM-GM, ta có

\(\dfrac{a+b+c}{2}\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{6}{2}=3\)

Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c=2

10 tháng 11 2017

tks :v

10 tháng 11 2017

Ta có :

\(\frac{a^2}{a+b}=\frac{a^2+ab-ab}{a+b}=a-\frac{ab}{a+b}\le a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)

Tương tự \(\hept{\begin{cases}\frac{b^2}{b+c}\le b-\frac{\sqrt{bc}}{2}\\\frac{c^2}{a+c}\le c-\frac{\sqrt{ac}}{2}\end{cases}}\)(2)

Nhhan (1);(2) lại ta được

 \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge a+b+c-\frac{\sqrt{ab}+\sqrt{ac}+\sqrt{bc}}{2}=a+b+c-3\)

Ta lại có : \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{bc}=6\) (tự cm)

\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge6-3=3\)(đpcm)

10 tháng 11 2017

chế gì ơi mình kết bạn với nhau được không?

1 tháng 7 2017

Ta có  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\)  \(\Rightarrow a+b+c\ge\sqrt{3}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c=\frac{\sqrt{3}}{3}\)

nhầm lẫn 1 số chỗ nên giờ mới ra,mong bn thông cảm

ta có:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}=1\)

đặt \(P=\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)

áp dụng bunhia ta có:

\(P\left(a+b+c\right)\ge\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2=1\)

\(\Rightarrow P\ge\frac{1}{a+b+c}\)

28 tháng 9 2018

\(VT=\frac{c+ab}{a+b}+\frac{b+ac}{a+c}+\frac{a+bc}{b+c}\)

\(=\frac{c\left(a+b+c\right)+ab}{a+b}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{a\left(a+b+c\right)+bc}{b+c}\)

\(=\frac{ac+bc+c^2+ab}{a+b}+\frac{ab+b^2+cb+ac}{a+c}+\frac{a^2+ab+ac+bc}{b+c}\)

\(=\frac{\left(c+a\right)\left(c+b\right)}{a+b}+\frac{\left(b+c\right)\left(a+b\right)}{a+c}+\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

28 tháng 9 2018

lm nhuthe thi no lon hon = 2 alk