Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết: \(a+b+c=3\Rightarrow b+c=3-a\). Tương tự: a+b=3-a và c+a=3-b
Khi đó \(\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}=\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\)
Ta chứng minh BĐT phụ sau:
\(\frac{1}{a^2-a+3}\le\frac{4-a}{9}\)(1)
Thật vậy, BĐT (1) \(\Leftrightarrow9\le\left(4-a\right)\left(a^2-a+3\right)\)
\(\Leftrightarrow9\le-a^3+5a^2-7a+12\)\(\Leftrightarrow-a^3+5a^2-7a+3\ge0\)
\(\Leftrightarrow-a^3+a^2+4a^2-4a-3a+3\ge0\)
\(\Leftrightarrow-a^2\left(a-1\right)+4a\left(a-1\right)-3\left(a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(-a^2+4a-3\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(-a^2+a+3a-3\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left[-a\left(a-1\right)+3\left(a-1\right)\right]\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(3-a\right)\ge0\)(2)
Ta thấy \(a;b;c>0\) và \(a+b+c=3\Rightarrow a< 3\)\(\Rightarrow3-a>0\)
Mà \(\left(a-1\right)^2\ge0\forall a\). Nên \(\left(a-1\right)^2\left(3-a\right)\ge0\)
Do đó: BĐT (2) luôn đúng với mọi 0<a<3 => BĐT (1) cũng đúng
Chứng minh tương tự \(\frac{1}{b^2-b+3}\le\frac{4-b}{9};\frac{1}{c^2-c+3}\le\frac{4-c}{9}\)
Từ đó suy ra:
\(\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\le\frac{12-\left(a+b+c\right)}{9}=\frac{12-3}{9}=1\)(Do a+b+c=3)
=> ĐPCM.
Cho x,y,z € Z+ tm: x+y+z=4
Tính A= \(\sqrt{ }\)x(4-y)(4-z) +\(\sqrt{ }\)y(4-x)(4-x) +\(\sqrt{ }\)z(4-x)(4-y) -\(\sqrt{ }\)xyz
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
Ta có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}+2\sqrt{\frac{b}{c}\cdot\frac{c}{b}}=3+2+2+2=9\)
Dấu bằng của BĐT xảy ra khi a = b= c = 1/3
Nếu biến đổi nhiều thì sẽ rất fuck tạp nên đề bài bảo cái gì thì cho xuất hiện cái đó :v
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)\(\Leftrightarrow\frac{1}{a}+1=1-\frac{1}{b}+1-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+1}{a}=\frac{b-1}{b}+\frac{c-1}{c}\ge2\sqrt{\frac{\left(b-1\right)\left(c-1\right)}{bc}}\).Tương tự ta có đpcm
Phức tạp :v quen tay