K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

bài này mình cũng học rồi nhưng mình quên hết rồi OK

26 tháng 1 2017

THẾ BẠN CỐ GHI RA VỞ KO BẠN RÚP MÌNH VS

31 tháng 12 2016

Ai biết cách làm giải hộ đi///

3 tháng 12 2017

(a+b+c+d)2\(\ge\frac{8}{3}\)(ab+ac+ad+bc+bd+cd)

<=>(a+b)2+2(a+b)(c+d)+(c+d)2\(\ge\).....

<=>a2+b2+c2+d2+2(ab+ac+ad+bc+bd+cd)\(\ge\)....

<=>3a2+3b2+3c2+3d2+6(ab+ac+ad+bc+bd+cd)\(\ge\)8(ab+ac+ad+bc+bd+cd)

<=> 3a2+3b2+3c2+3d2-2ab -2ac-2bc-2ad-2bd-2cd\(\ge\)0

<=> (a2-2ab+b2)+(a2-ac+c2)+(a2-2ad+d2)+(b2-2bc+c2)+(b2-2bd+d2)+(c2-2cd+d2)>=0

<=> (a-b)2+(a-c)2+(a-d)2+(b-c)2+(b-d)2+(c-d)2>=0 (DPCM)

Dau ''='' xay ra khi a=b=c=d

3 tháng 8 2020

Ta có :

 \(3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\)

\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge\frac{2}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Rightarrow\left(a+b+c+d\right)^2=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\)

\(\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\left(đpcm\right)\)

3 tháng 8 2020

\(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)\)\(+\left(c^2-2cd+d^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) ( đúng )
=> Đpcm

18 tháng 1 2020

\(\frac{a+b+c+d}{ab}+\frac{a+b+c+d}{ac}+\frac{a+b+c+d}{ad}\)

\(=\frac{a+b}{ab}+\frac{c+d}{ab}+\frac{a+b}{ac}+\frac{a+b}{ad}+\frac{c+d}{ac}+\frac{c+d}{ad}\)

\(=\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)+\left(d+c\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\)

Áp dụng bất đẳng thức:

\(\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge18\)

\(\left(c+d\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge18\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)+\left(c+d\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge36\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\ge36\left(đpcm\right)\)