K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=3\\b=3\\c=3\end{matrix}\right.\)

\(\Rightarrow\left(a-3\right)^{2017}\left(b-3\right)^{2018}\left(c-3\right)^{2019}=0\)

27 tháng 12 2018

\(\Rightarrow\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}-\frac{a+b+c}{a+b+c}=0\)

\(\Rightarrow\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

xét: \(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\left(\text{vì a+b+c khác 0}\right)\)

\(\text{ta có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{ab+bc+ac}{abc}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\frac{\left(ab+bc+ac\right).\left(a+b+c\right)-abc}{abc.\left(a+b+c\right)}=0\)

\(\Rightarrow\left(ab+bc+ac\right).\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(b+a\right).\left(c+a\right).\left(c+b\right)=0\)

\(\Rightarrow\hept{\begin{cases}b=-a\\a=-c\\c=-b\end{cases}}\)

\(M=\left(-b^{101}+b^{101}\right).\left(-c^{2017}+c^{2017}\right).\left(b^{2019}+-b^{2019}\right)=0\)

p/s: dài nhỉ =) 

6 tháng 12 2019

Ta có a(b+c)^2 +b(c+a)^2+c(a+b)^2 =4abc

ab^2+ac^2+2abc+ba^2bc^2+2abc+ca^2+cb^2+2abc=4abc

ab^2+ac^2+bc^2+ba^2+cb^2+ca^2+2abc=0

(ab^2+abc)+(ac^2+abc)+(bc^2+cb^2)+(a^2b+a^2c)=0

ab(b+c)+ac(b+c)+bc(b+c)+a^2(b+c)=0

(b+c)(ab+ac+bc+a^2)=0

(b+c)(a+b)(a+c)=0

*th1:b+c=0=> b=-c

=> b^2017 +c^2017 =0 

mà a^2017 +b^2017 +c^2017=1

=>a^2017=1 => a=1 

thay vào A rồi dc A=1 

các th khác tương tự

22 tháng 3 2019

Vì a ; b ; c dương \(\Rightarrow a+b+c\ne0\)

Ta có : \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a-b=0;b-c=0;c-a=0\Leftrightarrow a=b=c\)

Vậy \(A=\left(1-\frac{a}{b}\right)\left(2018-\frac{b}{c}\right)\left(2019-\frac{c}{a}\right)=\left(1-1\right).\left(...\right)=0\)

15 tháng 2 2019

a)Ta có: a3 + b3 + c3 = 3abc

=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)

=>Có 2 trường hợp 

a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0 

Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c

=>để (a-b)2 + (b-c)2 + (c-a)2 = 0

=>a=b=c

Thay trường hợp a=b=c vào P

=> (2017 +1)(2017+1)(2017+1)=20183

b)Tương tự a+b+c=0

=> a3 + b3 + c3 = 3abc

=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)

\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)

\(A=\frac{3abc}{abc}=3\) Do (a+b3 + c3=3abc thay vào)

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
4 tháng 9 2020

mn oi giúp tớ với