Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức đã cho tương đương với:
(b+c)^2−a(b+c)+a^2/3−3bc>0
⇔(b+c−a/2)^2+(a^3−36)/12a>0
BĐT này luôn đúng do a^3>36>0
Vậy ta có đpcm
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
Do 1≥ a,b,c≥0 ta co:
\((1-a^2)(1-b)+(1-b^2)(1-c)+(1-c^2)(1-a) ≥ 0\)
<=> \(3+a^2b+b^2c+c^2a ≥ a^2+b^2+c^2+a+b+c\)(1)
Lai co: \(a^2(1-a)+b^2(1-b)+c^2(1-c)+a(1-a^2)+b(1-b^2)+c(1-c^2) ≥ 0\)
<=> \(a^2+b^2+c^2+a+b+c ≥ 2(a^3+b^3+c^3)\)(2)
Tu (1) va (2) suy ra \(3+a^2b+b^2c+c^2a ≥ 2(a^3+b^3+c^3)\)