Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(ΔAHB=ΔAHC)
\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)
nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)
mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)
nên \(\widehat{EHC}=\widehat{FHC}\)
mà tia HC nằm giữa hai tia HE,HF
nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(cạnh huyền-góc nhọn)
Suy ra: AC=AK(hai cạnh tương ứng)
Xét tam giác vuông ACE và tam giác vuông AKE có : góc ECA = góc EKA = 90 độEA: cạnh huyền chung góc CAE = góc KAE (vì AE là tia phân giác góc A)Suy ra : Tam giác ACE= Tam giác AKE ( CH-GN)
=> AC=AK( hai cạnh tương ứng)ta có: AC=AK (cmt)=> A nằm trên đường trung trực của KC (1)AK=EC( tam giác AKE=tam giác ACE)=> E nằm trên đường trung trực của KC (2)
từ (1) và (2) suy ra AE là đường trung trực của KCvậy AE vuông góc với CKb) Ta có : trong tam giác vuông BCA: góc B + góc A = 90 độ
=> góc B = 90 độ - góc A= 90 độ - 60 độ = 30 độ Mà góc EAB = 30 độ Suy ra Tam giác EBA cân tại E
Mặt khác : EK vuông góc với AB
Nên EK cũng là đường trung trực của tam giác AEB=>BK=AKc) Trong tam giác vuông BEK ta có : EB > BK Mà BK=KA ; KA=AC=> BK=AC Hay EB>ACd) Ta có : ba đường cao BD;EK;CA luôn đồng quy tại một điểm theo tính chấtnên ba đường thẳng AC;BD;KE cùng đi qua 1 điểm
a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^
b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE
△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450
△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.
Chứng minh tương tự có △AMB vuông cân tại M.
c, Gọi F là giao điểm của BE và AK.
△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK
Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)
△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900
⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)
Từ (1) và (2) ⇒HK=CK
A B C H K I 1 2
a.Vì tam giác ABC cân tại A nên AH vừa là đường cao vừa là trung tuyến
=> HB=HC
b. Vì HB=HC=10:2=5(cm)
Áp dụng định lý Pi-ta -go vào tam giác AHB có
\(AH=\sqrt{AB^2-HB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)
c. Xét 2 tam giác AHK và tam giác AHI có:
Vì AH là đường cao mà tam giác ABC cân tại A nên AH cx là đường phân giác:
nên ta có: \(\widehat{A}_1=\widehat{A_2}\)
AH chung
=> tam giác AHK=tam giác AHI(c.g.c)
=>HI=HK(2 cạnh tương ứng )
d. Xl nha câu d quên cách ch/m rồi..