K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left(x-2\right)^2+4\le4\)

Dấu '=' xảy ra khi x=2

b: \(B=-2\left(y^2+2y+1-1\right)\)

\(=-2\left(y+1\right)^2+2\le2\)

Dấu '=' xảy ra khi y=-1

c: \(C=-\left(x^2+y^2+2x+y-3\right)\)

\(=-\left(x^2+2x+1+y^2+y+\dfrac{1}{4}-\dfrac{17}{4}\right)\)

\(=-\left(x+1\right)^2-\left(y+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\)

Dấu '=' xảy ra khi x=-1 và y=-1/2

4 tháng 8 2018

\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)

Vậy GTLN của A là -1 khi x = 3

\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)

Vậy GTLN của B là -8 khi x = -1

\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)

Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)

\(D=-x^2-y^2+2x-4y-10\)

\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)

\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)

Vậy GTLN của D là -5 khi x = 1; y = -2

30 tháng 7 2018

\(a,A=-x^2+6x-10\)

\(=-x^2+6x-9-1\)

\(=-\left(x^2-6x+9\right)-1\)

\(=-\left(x-3\right)^2-1\)

Ta có: \(-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)

=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)

cn lại lm tg tự 

=.= hok tốt!!

30 tháng 7 2018

a) A= -x2 + 6x -10

       = -(x2 - 6x) -10

       =  -(x2 - 2. x .3 +32 -9)- 10

      = -( x-3 )2  +9 -10 

      = - (x-3)2 -1 \(\le\)-1 với mọi giá trị của x

       Dấu '' = '' xảy ra khi và chỉ khi

               x-3 =0

               \(\Leftrightarrow\)x=3

Vậy giá trị lớn nhất của biểu thức A là -1 tại x =3

CÁC PHẦN KHÁC CẬU LÀM TƯƠNG TỰ

b) B= -2x2-4x-10

        = -2(x2+ 2x ) -10

        = -2 (x2 +2x+12 -1)-10

         =-2(x+1)2 +2 -10

        =-2(x+1)2 -8  \(\le\)-8 với mọi giá trị của x

Dấu " ='' xảy ra khi và chỉ khi

        x+1=0

............................

c) C= -2x2 +3x -10

       = -2(x2 -\(\frac{3}{2}\)x) -10

       = -2( x2 - 2.x.\(\frac{3}{4}\)\(\frac{3^2}{4^2}\)-\(\frac{9}{16}\))-10

       = -2(x-\(\frac{3}{4}\))+\(\frac{9}{8}\)-10

        =-2(x- \(\frac{3}{4}\))2 +\(\frac{-71}{8}\)\(\le\)\(\frac{-71}{8}\)với mọi giá trị của x

Dấu  bằng ''='' xảy ra khi và chi khi  

     x-\(\frac{3}{4}\)=0

   .......................................................

d)  D= -x2 -y2+2x-4y -10

          =(-x2+2x) +( -y2 -4y) -10

          = -(x2 -2x+1 -1) -(y2 +4y+22-4 )-10 

          =-(x-1)2 +1  -(y+2)2 +4 -10

           =-(x-1)2 - (y+2)2 -5   \(\le\)5  với mọi giá tri của x

Dấu '' ='' xảy ra khi và chỉ khi  

\(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

......................................................

e) XIN LỖI TỚ CHƯA NGHĨ RA

                          

       

20 tháng 6 2017

a ) \(x^2-x+1\)

\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)

20 tháng 6 2017

Bạn làm giúp mih thêm vài bài nữa đc k

3 tháng 10 2017

đề bài đâu

ucche

3 tháng 10 2017

cô hk ghi nha bn

sorry nha

5 tháng 7 2017

a) đặt \(A=x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)

b) đặt \(B=2+x-x^2\)

\(=-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)

c) đặt \(C=x^2-4x+1\)

\(=x^2-2\cdot x\cdot2+2^2-4+1\)

\(=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi \(x=2\)

Vậy \(MIN_c=-3\) khi \(x=2\)

d) đặt \(D=4x^2+4x+11\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)

mấy câu còn lại tương tự

6 tháng 8 2017

dài ghê

tk mk nha mk đang âm điểm

chúc các bn hok giỏi

6 tháng 8 2017

mình k cho bạn rồi nha, tích lại cho mình, số điểm của mình là -159 điểm

8 tháng 6 2017

a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)

b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)

f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)

8 tháng 6 2017

a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)

\(=x^2+2xy+y^2-x^2+y^2\)

\(=2y^2+2xy\)

\(=2y\left(x+y\right)\)

c) \(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-x^2\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)

\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)

\(=\left(4x^2-1\right)\left(y^2-1\right)\)