Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ giả thiết => a1+a2+a3<3a3
a4+a5+a6<3a6
a7+a8+a8<3a9
=>\(a_1+a_2+...+a_9< 3\left(a_3+a_6+a_9\right)\Leftrightarrow\dfrac{a_1+a_2+...+a_9}{a_3+a_6+a_9}< 3\left(ĐPCM\right)\)
b)Câu này phải là \(\ge\) chứ không phải > nha bạn:
Ta có:
(a-b)2\(\ge\)0 với mọi ab
<=>a2+b2\(\ge\)2ab(1) với mọi ab
Dấu "=" xảy ra khi và chỉ khi (a-b)2=0 <=> a=b
Chứng minh tương tự ta được a2+1\(\ge\)2a(2) ; b2+1\(\ge\)2b(3)
Dấu "=" xảy ra khi và chỉ khi a=1 ; b=1
Cộng vế với vế của (1);(2) và (3):
2(a2+b2+1)\(\ge\)2(ab+a+b)
<=> a2+b2+1\(\ge\)ab+a+b
Dấu bằng xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}a=b\\b=1\\a=1\end{matrix}\right.\Leftrightarrow}a=b=1\)
\(2a^2+2b^2+2ab+2ac+2bc< 0\)
\(\Leftrightarrow\left(a+b+c\right)^2+a^2+b^2-c^2< 0\)
\(\Leftrightarrow a^2+b^2< c^2-\left(a+b+c\right)^2\le c^2\)
\(\Rightarrow a^2+b^2< c^2\)
a) Áp dụng BĐT tam giác:
b-c<a
\(\Leftrightarrow\left(b-c\right)^2< a^2\)(đpcm).
b) Áp dụng BĐT tam giác:
\(a< b+c\)
\(\Leftrightarrow a^2< ab+ac\)
TTự, có: \(b^2< bc+ab,c^2< ac+bc\)
Cộng 3 BĐT, ta được: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
Đáp án c) nhé em.
x-2<=0 => x<=2
x2(x-2)<=0 => x=0 hoặc x-2<=0 => x<=2
Em mới học lớp 6 thôi ạ! Xin lỗi nhiều vì không giúp được!
Ta có: \(\frac{a}{b}\)<\(\frac{c}{d}\)-->ad<bc (b,d>0)
Gỉa sử \(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\) đúng
a (b2+d2)<b(ab+cd) (b,d>0)
<=> ab2+ad2<ab2+bcd
<=> ad2-bcd<0
<=> d(ad-bc)<0 (*)
mà d>0; ad<bc(cmt)--> ad-bc<0
nên (*) đúng.
cm tiếp vế kia cũng như thế rồi kết luận