Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(...9\right)^2=\left(...1\right)\)
\(\left(...9\right)^{1999}=\left(...9\right)^{2.999+1}=\left(...1\right).\left(9\right)=\left(...9\right)\)
\(\left(...7\right)^4=\left(...1\right)\)
\(\left(...7\right)^{4.499+1}=\left(...1\right).\left(...7\right)=\left(...7\right)\)
A có tận cùng là 2 không chia hết cho 5
Vậy không thể chứng minh a chia hết cho 5
bạn làm hẳn ra cho mình đi bạn nói zậy làm sao mình hiểu được
Ta có: 999991999=(999991998).99999(1)
Số có tận cùng là 9 vỡi số mũ chẵn sẽ có tận cùng là 1=>(1)=....1 . 99999 = ...9(tận cùng là 9)
5555571997=(5555571996).555557=(5555572)998.555557=(...9)998.555557=....1 . 555557 = ...7(tận cùng là 7)
Tận cùng là 9 - tận cùng là 7 được tận cùng là 2 k chia hết cho 5
Ta có:
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993-555557^{1996}.555557\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)
\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)
\(A=\overline{\left(.....0\right)}\)
Vì A có tận cùng là 0
\(\Rightarrow A⋮5\) (Đpcm)
Ta có :
A=999993^{1999}-555557^{1997}A=9999931999−5555571997
=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557
=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557
=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557
=\left(....7\right)-\left(....7\right)=(....7)−(....7)
=\left(....0\right)⋮5=(....0)⋮5
\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)
999993^1 tận cùng là 3
999993^2 ....................9
999993^3 ....................7
999993^4 ....................1
999993^5 ....................3
Vậy 999993^(m+4k) và 999993^m có chữ số tận cùng giống nhau ---> chữ số tận cùng của 999993^1999 = 999993^(3 + 4.499) là 7
Làm tương tự sẽ thấy chữ số tận cùng của 555557^1997 cũng là 7 ---> chữ số tận cùng của A là 0 ---> A chia hết cho 5
Hello bạn ^_^"
Có :
+) 9999931999 = ...31999 = ...31996 x ...33 = (...34)499 x ...33 = ...1499 x ...27 = ...1 x ...7 = ...7
+) 5555571997 = ...71996 x ...71 = (...74)499 x ...7 = ...1499 x ...7 = ...1 x ...7 = ...7
Ta có : 9999931999 - 5555571997 = ...7 - ...7 = ...0 \(⋮\)5
Vậy ta có điều phải chứng minh !!!
Okê, số có tận cùng là 3 hoặc 7 khi lũy thừa lên 4 sẽ có số tận cùng là 1.
VD :
4645396 = (...34)24 = ...124 = ...1
nhận thấy:
999993^1999 có chữ số tận cùng là 7 ( vì 1999 : 4 dư 3. ứng với 3 3 = 27 )
555557^1997.có chữ số tận cùng là 7 ( vì 1997 : 4 dư 1. ứng với 7 1 = 7 )
=> 999993^1999 - 555557^1997 có chữ số tận cùng là 0 =>Hiệu chia hết cho 5
Tick nha
Ta có: 9999931999=(...3)499.4+3
=[(...3)4]499.(...3)3
=(...1)499.(...7)
=(...1).(...7)
=(...7)
Ta có: 5555571997=(...7)4.499+1
=[(...7)4]499.(...7)1
=(...1)499.(...7)
=(...1).(...7)
=(...7)
Vậy A=(...7)-(...7)=(...0)
Mà các số có CSTC là 0 thì chia hết cho 5
=>A chia hết cho 5(đpcm)