Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) 102005-1 không chia hết cho cả 3 và 9 vì 1 + 9 = 10 ( không tính số 0)
b) 102006+ 2 chia hết cho 3 nhưng không chia hết cho 9 vì: 1 + 2=3 ( không tính số 0)
2
a) *\(\in\){ 1;4;7}
b ) *\(\in\){ 6}
c) *(trước)\(\in\){ 0,3,6,9}
*(sau)\(\in\){ 0}
d) * ( trước) \(\in\){ 7}
* ( sau) \(\in\){ 0}
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
2.Gọi số cần tìm là \(x\left(x\ne0,x>9\right)\)
Ta có:
\(53=mx+2\left(m\in N\right)\\ \Rightarrow51=mx\\ \Rightarrow x\inƯ\left(51\right)\left(1\right)\\ 77=nx+9\left(n\in N\right)\\ \Rightarrow68=nx\\ \Rightarrow x\inƯ\left(68\right)\left(2\right)\)
Từ (1) và (2) ta có:
\(x\inƯC\left(51,68\right)\)
\(51=3\cdot17\\ 68=2^2\cdot17\\ \Rightarrow\text{ƯCLN}\left(51,68\right)=17\\ ƯC\left(51,68\right)=Ư\left(17\right)=\left\{1;17\right\}\)
Vì x > 9 nên x = 17
Vậy số chia là 17
3. Làm câu b trước, các câu kia trả lời tương tự hoặc áp dụng điều đã chứng minh
b,
\(a+a^2+a^3+a^4+...+a^{29}+a^{30}\\ =\left(a+a^2\right)+\left(a^3+a^4\right)+...+\left(a^{29}+a^{30}\right)\\ =a\left(1+a\right)+a^3\left(1+a\right)+...+a^{29}\left(1+a\right)\\ =\left(1+a\right)\left(a+a^3+...+a^{29}\right)⋮a+1\)
Vậy \(a+a^2+a^3+a^4+...+a^{29}+a^{30}⋮a+1\) với a thuộc N
a) Ta có:\(M=2+2^2+2^3+...+2^{100}\)
\(2M=2^2+2^3+2^4+...+2^{101}\)
\(2M-M=2^{101}-2\)
Hay \(M=2^{101}-2\)
b) Ta có: \(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3\)
\(=3.\left(2+2^3+...+2^{99}\right)\)
\(\Rightarrow M⋮3\)
Hok tốt nha!!!
a) M=2+22+23+...+2100
2M=2.(2+22+23+...+2100)
2M=2.2+2.22+2.23+...+2100
2M=22+23+24+...+2101
2M-M=(22+23+24+...+2101) - (2+22+23+...+2100)
M=2101- 2
1)
a)10100+5 chia hết cho 3 và 5 vì
10100=1000.....(100 số 0) => có tổng cacs chữ số =1
=>10100+5 có tổng các chữ số = \(1+5⋮3\)
10100+5 = 100....05(99 số 0)
vì có tận cùng =5 nên =>\(10^{100}+5⋮5\)
b) bn làm tương tự nhé
A=800!=1.2.3.4.........800
Các số là bội của 5 là: 5;10;15;...;800, có (800-5):5+1=160 ( số)
Các số là bội của 52 là: 25,50,75,..., 800. Có (800-25):25+1=32 ( số)
Không cần xét 53 à 54 cũng biết A chia hết cho 5160+32=5192 => A phải chia hết cho 5189