K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

\(A=7+7^2+7^3+...+7^{2016}\)

\(A=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{2014}+7^{2015}+7^{2016}\right)\)

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2014}\left(1+7+7^2\right)\)

\(A=7.57+7^4.57+...+7^{2014}.57\)

\(A=\left(7+7^4+...+7^{2014}\right).57⋮57\) ( đpcm ) 

11 tháng 9 2016

Ta có :

\(A=7\left(1+7+7^2\right)+.....+7^{2014}\left(1+7+7^2\right)\)

\(\Rightarrow A=7.57+....+7^{2014}.57\)

\(\Rightarrow A=57.\left(7+....+7^{2014}\right)\)

=> A chia hêt cho 57

21 tháng 7 2016

              A = 7 + 72 + 73 + .... + 72016        có (2016 - 1) : 1 + 1 = 2016 số hạng

             A = (7 + 72 + 73) + ... + (72014 + 72015 + 72016)

            A = 7 . (1 + 7 + 72) + .... + 72014 . (1 + 7 + 72)

            A = 7 . (1 + 7 + 49) + .... + 72014 . (1 + 7+ 49)

           A = 7 . 57 + ... + 72014 . 57

           A = 57 . (7 + ... + 72014) chia hết cho 57

         => A chia hết cho 57 (ĐPCM)

        Ủng hộ mk nha !!! ^_^

21 tháng 7 2016

A = 7 + 72 + 7+.....+ 72016

A = (7 + 72 + 73) + (74 + 75 + 76) +....+ (72014 + 72015 + 72016)

A = 7(1+7+72) + 74(1+7+72) +....+ 72014(1+7+72)

A = 7.57 + 74.57 +.....+ 72014.57

A = (7 + 74 +....+ 72014).57 chia hết cho 57 (Đpcm)

4 tháng 2 2016

+)A=2^1+2^2+2^3+2^4+...+2^2010

=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)

=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)

=>A=6+2^2.6+2^4.6+...+2^2008.6

=>A=6.(1+2^2+2^4+...+2^2008)

=>A=3.2.(1+2^2+2^4+...+2^2008)

=>A chia hết cho 3

A=2+2^2+2^3+2^4+...+2^2010

A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)

A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)

A=2.7+2^4.7+2^7.7+...+2^2008.7

A=7.(2+2^4+2^7+...+2^2008)

=> A chia hết cho 7

các phần khác làm tương tự

4 tháng 2 2016

A = 21 + 22 + 23 + 2+ .... + 22009 + 22010

=> A = ( 2+ 22 ) + ( 23 + 2) + .... + ( 22009 + 22010 )

=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )

=> A = 21.3 + 23.3 + .... + 22009.3

=> A = 3.( 21 + 23 + .... + 22009 )

Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )

A = 21 + 22 + 2+ 24 + 2+ 26 + .... + 22007 + 22008 + 22009

=> A = ( 21 + 22 + 23 ) + ( 24 + 2+ 26 ) + .... + ( 22007 + 22008 + 22009 )

=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )

=> A = 21.7 + 24.7 + .... + 22007.7

=> A = 7.( 21 + 24 + .... + 22007 )

Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )

Các ý sau tương tự .

8 tháng 11 2021

\(A=7+7^2+7^3+...+7^{120}\)

\(A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(A=7.57+7^4.57+...+7^{118}.57\)

\(A=57\left(7+7^4+...+7^{118}\right)\)

\(\Rightarrow A⋮57\)

26 tháng 12 2021

Sợ quá!

3 tháng 12 2015

a. => 7A=7.(7+72+73+...+72016)

7A=72+73+74+...+72017

=> 7A-A=(72+73+74+...+72017)-(7+72+73+...+72016)

=> 6A=72017-7

=> A=\(\frac{7^{2017}-7}{6}\).

b. A=(7+72)+(73+74)+...+(72015+72016)

=7.(1+7)+73.(1+7)+...+72015.(1+7)

=7.8+73.8+...+72015.8

=8.(7+73+...+72015) chia hết cho 8

=> A chia hết cho 8.

c. A=(7+72+73)+(74+75+76)+...+(72014+72015+72016)

=7.(1+7+72)+74.(1+7+72)+...+72014.(1+7+72)

=7.57+74.57+...+72014.57

=57.(7+74+...+72014) chia hết cho 57

=> A chia hết cho 57.

24 tháng 11 2016

B= 7+7^2+7^3+...+7^2016

   = ( 7+7^2)+....+(7^2015+7^2016)

   = 7(1+7)+.....+7^2015(1+7)

    = (1+7)(7+...+7^2015)

     = 8(7+....+7^2015) chia hết cho 8

chia hết cho 57 tương tự như trên bn nhóm 3 số lại nha

VD (7+7^2+7^3) rồi đặt thừa số trong trong còn lại 1+7+7^2

5 tháng 12 2017

1/ A= 71+72+73+74+75+76\(⋮\)57

Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)

=7x(1+7+72)+74x(1+7+72)

=7x57+74x57

=57x(7+74)\(⋮\)57

4n+17

Vậy A \(⋮\)57

Phần 2 thiếu đề bài

3/ 4n+17\(⋮\)2n+3

=>4n+17-2x(2n+3)\(⋮\) 2n+3

=>4n+17-4n-6\(⋮\) 2n+3

=>11\(⋮\)2n+3

=>2n+3 \(\varepsilon\)Ư(11)

mà Ư(11) ={1;11}

Vì 2n+3 là số tự nhiên =>2n+3 =11

=>2n=11-3

=>2n=8

=>n=8 :2

=> n=4 

Vậy n=4 thì ...

4/ 9n+17 \(⋮\)3n+2

=>9n+17-3x(3n+2)\(⋮\)3n+2

=>9n+17-9n-6\(⋮\)3n+2

=>11\(⋮\)3n+2

=>3n+2 \(\varepsilon\)Ư(11)

mà Ư(11)={1;11}

Vì 3n+2 là số tự nhiên => 3n+2>2

=>3n+2 =11

=>3n=11-2

=>3n=9

=>n=9:3

=>n=3

Vậy n=3 thì ...

19 tháng 12 2015

a) A=2+2^2+2^3+2^4+...+2^2010

=(2+2^2+2^3)+...+(2^2008+2^2009+2^2010)

=2(1+2+2^2)+...+2^2008(1+2+2^2)

=7(2+...+2^2008) chia hết cho 7

trường hợp chia hết cho 3 cách làm tương đối giống 

b) D=7+7^2+7^3+7^4+...+7^2010

=(7+7^2+7^3)+...+(7^2008+7^2009+7^2010)

=7(1+7+7^2)+...+7^2008(1+7+7^2) 

=57(7+...+7^2008) chia hết cho 57

trường hợp cho hết cho 8 cách làm tương tự