Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{72^2}{24^2}=\frac{3^2.24^2}{24^2}=3^2=9\)
\(\frac{\left(-7,5\right)^2}{2,5^2}=\frac{\left(7,5\right)^2}{\left(2,5\right)^2}=\frac{\left(2,5\right)^2.3^2}{\left(2,5\right)^2}=9\)
\(\frac{15^2}{27}=\frac{3^2.5^2}{27}=\frac{9.25}{27}=\frac{25}{3}\)
\(\frac{72^2}{24^2}=\left(\frac{72}{24}\right)^2=3^2=9\)
\(\frac{\left(-7,5\right)^3}{\left(2,5\right)^3}=\left(\frac{-7,5}{2,5}\right)^3=\left(-3\right)^3=-27\)
\(\frac{15^3}{27}=\frac{15^3}{3^3}=\left(\frac{15}{3}\right)^3=5^3=125\)
Chúc bạn hok tốt
a) \(7^6+7^5-7^4=\left(7^4.7^2\right)+\left(7^3.7^2\right)-\left(7^2.7^2\right)=7^2\left(7^4+7^3+7^2\right)=7^2.1793\)
Mà 1793 chia hết cho 11 => 72.1793 chia hết cho 11
a, Ta có:
\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=3^{25}.3.5=3^{25}.15\)
Vì 15 chia hết cho 15 nên \(3^{25}.15\) chia hết cho 15.
Vậy................(đpcm)
b,Ta có:
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^3\right)^{24}.2^{10}\)
\(=2^{162}.3^{54}.2^{24}.3^{72}.2^{10}=2^{196}.3^{126}\)
\(=2^{108}.3^{72}.2^{88}.3^{54}\)
\(72^{36}=\left(2^3.3^2\right)^{36}=2^{108}.3^{72}\)
Vì \(2^{108}.3^{72}\) chia hết cho \(2^{108}.3^{72}\) nên \(2^{108}.3^{72}.2^{88}.3^{54}\) chia hết cho \(2^{108}.3^{72}\)
Vậy............(đpcm)
Chúc bạn học tốt!!!
\(\frac{72^2}{24^2}=\frac{\left(2^3\cdot3^2\right)^2}{\left(2^3\cdot3\right)^2}=\frac{2^6\cdot3^4}{2^6\cdot3^2}=3^2=9\)
\(\frac{15^3}{27}=\frac{3^3\cdot5^3}{3^3}=5^3=125\)
15: Tính
a) Ta có: \(\frac{3^6\cdot45^4-15^{13}\cdot5^{-9}}{27^4\cdot25^3+45^6}\)
\(=\frac{3^6\cdot3^4\cdot15^4-15^{13}\cdot\frac{1}{5^9}}{9^4\cdot3^4\cdot5^6+9^6\cdot5^6}\)
\(=\frac{3^6\cdot45^4-\frac{5^{13}\cdot3^{13}}{5^9}}{9^4\cdot5^6\left(3^4+9^2\right)}\)
\(=\frac{45^4\cdot3^6-5^4\cdot3^{13}}{45^4\cdot5^2\cdot2\cdot9^2}\)
\(=\frac{5^4\cdot3^6\left(9^4-3^7\right)}{5^2\cdot3^4\cdot45^4\cdot2}\)
\(=\frac{5^2\cdot3^2\cdot\left(3^8-3^7\right)}{45^4\cdot2}\)
\(=\frac{5^2\cdot3^9\cdot\left(3-1\right)}{5^4\cdot3^8\cdot2}\)
\(=\frac{1}{5^2}\cdot3\)
\(=\frac{3}{25}\)